Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(26): 9713-9721, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37310875

RESUMO

Surveillance of antibiotic resistance genes (ARGs) has been increasingly conducted in environmental sectors to complement the surveys in human and animal sectors under the "One-Health" framework. However, there are substantial challenges in comparing and synthesizing the results of multiple studies that employ different test methods and approaches in bioinformatic analysis. In this article, we consider the commonly used quantification units (ARG copy per cell, ARG copy per genome, ARG density, ARG copy per 16S rRNA gene, RPKM, coverage, PPM, etc.) for profiling ARGs and suggest a universal unit (ARG copy per cell) for reporting such biological measurements of samples and improving the comparability of different surveillance efforts.


Assuntos
Antibacterianos , Genes Bacterianos , Animais , Humanos , Antibacterianos/farmacologia , RNA Ribossômico 16S/genética , Resistência Microbiana a Medicamentos/genética , Metagenômica/métodos
2.
J Infect Dis ; 223(12 Suppl 2): S155-S170, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33906217

RESUMO

INTRODUCTION: In order to improve our understanding of the fundamental limits of core interventions and guide efforts based on prioritization and identification of effective/novel interventions with great potentials to interrupt persistent malaria transmission in the context of high vector control coverage, the drivers of persistent disease transmission were investigated in three eco-epidemiological settings; forested areas in Cameroon, coastal area in Kenya and highland areas in Ethiopia. METHODS: Mosquitoes were sampled in three eco-epidemiological settings using different entomological sampling techniques and analysed for Plasmodium infection status and blood meal origin in blood-fed specimens. Human behavioural surveys were conducted to assess the knowledge and attitude of the population on malaria and preventive measures, their night activities, and sleeping pattern. The parasitological analysis was conducted to determine the prevalence of Plasmodium infection in the population using rapid diagnostic tests. RESULTS: Despite the diversity in the mosquito fauna, their biting behaviour was found to be closely associated to human behaviour in the three settings. People in Kenya and Ethiopia were found to be more exposed to mosquito bites during the early hours of the evening (18-21h) while it was in the early morning (4-6 am) in Cameroon. Malaria transmission was high in Cameroon compared to Kenya and Ethiopia with over 50% of the infected bites recorded outdoors. The non-users of LLINs were 2.5 to 3 times more likely to be exposed to the risk of acquiring malaria compared to LLINs users. Malaria prevalence was high (42%) in Cameroon, and more than half of the households visited had at least one individual infected with Plasmodium parasites. CONCLUSIONS: The study suggests high outdoor malaria transmission occurring in the three sites with however different determinants driving residual malaria transmission in these areas.


Assuntos
Anopheles/parasitologia , Malária/transmissão , Controle de Mosquitos/métodos , Mosquitos Vetores/parasitologia , Plasmodium , Animais , Camarões/epidemiologia , Etiópia/epidemiologia , Humanos , Quênia/epidemiologia , Malária/epidemiologia
3.
Malar J ; 15: 182, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27013475

RESUMO

BACKGROUND: Population genomic features such as nucleotide diversity and linkage disequilibrium are expected to be strongly shaped by changes in population size, and might therefore be useful for monitoring the success of a control campaign. In the Kilifi district of Kenya, there has been a marked decline in the abundance of the malaria vector Anopheles gambiae subsequent to the rollout of insecticide-treated bed nets. METHODS: To investigate whether this decline left a detectable population genomic signature, simulations were performed to compare the effect of population crashes on nucleotide diversity, Tajima's D, and linkage disequilibrium (as measured by the population recombination parameter ρ). Linkage disequilibrium and ρ were estimated for An. gambiae from Kilifi, and compared them to values for Anopheles arabiensis and Anopheles merus at the same location, and for An. gambiae in a location 200 km from Kilifi. RESULTS: In the first simulations ρ changed more rapidly after a population crash than the other statistics, and therefore is a more sensitive indicator of recent population decline. In the empirical data, linkage disequilibrium extends 100-1000 times further, and ρ is 100-1000 times smaller, for the Kilifi population of An. gambiae than for any of the other populations. There were also significant runs of homozygosity in many of the individual An. gambiae mosquitoes from Kilifi. CONCLUSIONS: These results support the hypothesis that the recent decline in An. gambiae was driven by the rollout of bed nets. Measuring population genomic parameters in a small sample of individuals before, during and after vector or pest control may be a valuable method of tracking the effectiveness of interventions.


Assuntos
Anopheles/crescimento & desenvolvimento , Anopheles/genética , Variação Genética , Genética Populacional , Insetos Vetores , Animais , Anopheles/classificação , Simulação por Computador , Genômica , Quênia , Mosquiteiros/estatística & dados numéricos
4.
Malar J ; 15: 213, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27075879

RESUMO

BACKGROUND: Targeted malaria control interventions are expected to be cost-effective. Clinical, parasitological and serological markers of malaria transmission have been used to detect malaria transmission hotspots, but few studies have examined the relationship between the different potential markers in low transmission areas. The present study reports on the relationships between clinical, parasitological, serological and entomological markers of malaria transmission in an area of low transmission intensity in Coastal Kenya. METHODS: Longitudinal data collected from 831 children aged 5-17 months, cross-sectional survey data from 800 older children and adults, and entomological survey data collected in Ganze on the Kenyan Coast were used in the present study. The spatial scan statistic test used to detect malaria transmission hotspots was based on incidence of clinical malaria episodes, prevalence of asymptomatic asexual parasites carriage detected by microscopy and polymerase chain reaction (PCR), seroprevalence of antibodies to two Plasmodium falciparum merozoite antigens (AMA1 and MSP1-19) and densities of Anopheles mosquitoes in CDC light-trap catches. RESULTS: There was considerable overlapping of hotspots by these different markers, but only weak to moderate correlation between parasitological and serological markers. PCR prevalence and seroprevalence of antibodies to AMA1 or MSP1-19 appeared to be more sensitive markers of hotspots at very low transmission intensity. CONCLUSION: These findings may support the choice of either serology or PCR as markers in the detection of malaria transmission hotspots for targeted interventions.


Assuntos
Anopheles/fisiologia , Infecções Assintomáticas/epidemiologia , Insetos Vetores/fisiologia , Malária/epidemiologia , Adolescente , Adulto , Idoso , Animais , Criança , Pré-Escolar , Estudos Transversais , Humanos , Incidência , Lactente , Quênia/epidemiologia , Malária/diagnóstico , Malária/transmissão , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Densidade Demográfica , Prevalência , Estudos Soroepidemiológicos , Adulto Jovem
5.
Mol Biol Evol ; 31(4): 889-902, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24408911

RESUMO

Anopheles gambiae s.l. are important malaria vectors, but little is known about their genomic variation in the wild. Here, we present inter- and intraspecies analysis of genome-wide RADseq data, in three Anopheles gambiae s.l. species collected from East Africa. The mosquitoes fall into three genotypic clusters representing described species (A. gambiae, A. arabiensis, and A. merus) with no evidence of cryptic breeding units. Anopheles merus is the most divergent of the three species, supporting a recent new phylogeny based on chromosomal inversions. Even though the species clusters are well separated, there is extensive shared polymorphism, particularly between A. gambiae and A. arabiensis. Divergence between A. gambiae and A. arabiensis does not vary across the autosomes but is higher in X-linked inversions than elsewhere on X or on the autosomes, consistent with the suggestion that this inversion (or a gene within it) is important in reproductive isolation between the species. The 2La/2L+(a) inversion shows no more evidence of introgression between A. gambiae and A. arabiensis than the rest of the autosomes. Population differentiation within A. gambiae and A. arabiensis is weak over approximately 190-270 km, implying no strong barriers to dispersal. Analysis of Tajima's D and the allele frequency spectrum is consistent with modest population increases in A. arabiensis and A. merus, but a more complex demographic history of expansion followed by contraction in A. gambiae. Although they are less than 200 km apart, the two A. gambiae populations show evidence of different demographic histories.


Assuntos
Anopheles/genética , Insetos Vetores/genética , Polimorfismo de Nucleotídeo Único , Animais , Feminino , Especiação Genética , Genoma de Inseto , Humanos , Quênia , Desequilíbrio de Ligação , Malária/transmissão , Masculino , Controle de Mosquitos , Filogeografia , Análise de Sequência de DNA , Especificidade da Espécie , Tanzânia
6.
Malar J ; 12: 13, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23297732

RESUMO

BACKGROUND: Over the past 20 years, numerous studies have investigated the ecology and behaviour of malaria vectors and Plasmodium falciparum malaria transmission on the coast of Kenya. Substantial progress has been made to control vector populations and reduce high malaria prevalence and severe disease. The goal of this paper was to examine trends over the past 20 years in Anopheles species composition, density, blood-feeding behaviour, and P. falciparum sporozoite transmission along the coast of Kenya. METHODS: Using data collected from 1990 to 2010, vector density, species composition, blood-feeding patterns, and malaria transmission intensity was examined along the Kenyan coast. Mosquitoes were identified to species, based on morphological characteristics and DNA extracted from Anopheles gambiae for amplification. Using negative binomial generalized estimating equations, mosquito abundance over the period were modelled while adjusting for season. A multiple logistic regression model was used to analyse the sporozoite rates. RESULTS: Results show that in some areas along the Kenyan coast, Anopheles arabiensis and Anopheles merus have replaced An. gambiae sensu stricto (s.s.) and Anopheles funestus as the major mosquito species. Further, there has been a shift from human to animal feeding for both An. gambiae sensu lato (s.l.) (99% to 16%) and An. funestus (100% to 3%), and P. falciparum sporozoite rates have significantly declined over the last 20 years, with the lowest sporozoite rates being observed in 2007 (0.19%) and 2008 (0.34%). There has been, on average, a significant reduction in the abundance of An. gambiae s.l. over the years (IRR = 0.94, 95% CI 0.90-0.98), with the density standing at low levels of an average 0.006 mosquitoes/house in the year 2010. CONCLUSION: Reductions in the densities of the major malaria vectors and a shift from human to animal feeding have contributed to the decreased burden of malaria along the Kenyan coast. Vector species composition remains heterogeneous but in many areas An. arabiensis has replaced An. gambiae as the major malaria vector. This has important implications for malaria epidemiology and control given that this vector predominately rests and feeds on humans outdoors. Strategies for vector control need to continue focusing on tools for protecting residents inside houses but additionally employ outdoor control tools because these are essential for further reducing the levels of malaria transmission.


Assuntos
Anopheles/classificação , Anopheles/crescimento & desenvolvimento , Vetores de Doenças , Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , Animais , Anopheles/parasitologia , Anopheles/fisiologia , Comportamento Alimentar , Feminino , Humanos , Quênia/epidemiologia , Plasmodium falciparum/isolamento & purificação , Densidade Demográfica
7.
JAC Antimicrob Resist ; 5(2): dlad045, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37090916

RESUMO

Implementation research (IR) has proved to be a potential catalyst in facilitating the uptake of evidence-based innovations into routine practices and thereby maximizing public health outcomes. IR not only focuses on the effectiveness of the innovations but also identifies and addresses the barriers and facilitators to maximize their uptake into routine practices. This article describes the processes undertaken to implement a research project aimed at promoting access and rational use of antibiotics for children (PARAC). It also provides an overview of the lessons learnt during its implementation in Tanzanian hospital and community settings.

8.
Lancet Microbe ; 4(12): e1063-e1070, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37977163

RESUMO

Whole-genome sequencing of antimicrobial-resistant pathogens is increasingly being used for antimicrobial resistance (AMR) surveillance, particularly in high-income countries. Innovations in genome sequencing and analysis technologies promise to revolutionise AMR surveillance and epidemiology; however, routine adoption of these technologies is challenging, particularly in low-income and middle-income countries. As part of a wider series of workshops and online consultations, a group of experts in AMR pathogen genomics and computational tool development conducted a situational analysis, identifying the following under-used innovations in genomic AMR surveillance: clinical metagenomics, environmental metagenomics, gene or plasmid tracking, and machine learning. The group recommended developing cost-effective use cases for each approach and mapping data outputs to clinical outcomes of interest to justify additional investment in capacity, training, and staff required to implement these technologies. Harmonisation and standardisation of methods, and the creation of equitable data sharing and governance frameworks, will facilitate successful implementation of these innovations.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Genômica/métodos , Genoma , Sequenciamento Completo do Genoma/métodos
9.
Lancet Microbe ; 4(12): e1040-e1046, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37977161

RESUMO

Integration of genomic technologies into routine antimicrobial resistance (AMR) surveillance in health-care facilities has the potential to generate rapid, actionable information for patient management and inform infection prevention and control measures in near real time. However, substantial challenges limit the implementation of genomics for AMR surveillance in clinical settings. Through a workshop series and online consultation, international experts from across the AMR and pathogen genomics fields convened to review the evidence base underpinning the use of genomics for AMR surveillance in a range of settings. Here, we summarise the identified challenges and potential benefits of genomic AMR surveillance in health-care settings, and outline the recommendations of the working group to realise this potential. These recommendations include the definition of viable and cost-effective use cases for genomic AMR surveillance, strengthening training competencies (particularly in bioinformatics), and building capacity at local, national, and regional levels using hub and spoke models.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Humanos , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Genômica , Instalações de Saúde , Biologia Computacional
10.
Lancet Microbe ; 4(12): e1056-e1062, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37977165

RESUMO

The intersection of human, animal, and ecosystem health at One Health interfaces is recognised as being of key importance in the evolution and spread of antimicrobial resistance (AMR) and represents an important, and yet rarely realised opportunity to undertake vital AMR surveillance. A working group of international experts in pathogen genomics, AMR, and One Health convened to take part in a workshop series and online consultation focused on the opportunities and challenges facing genomic AMR surveillance in a range of settings. Here we outline the working group's discussion of the potential utility, advantages of, and barriers to, the implementation of genomic AMR surveillance at One Health interfaces and propose a series of recommendations for addressing these challenges. Embedding AMR surveillance at One Health interfaces will require the development of clear beneficial use cases, especially in low-income and middle-income countries. Evidence of directionality, risks to human and animal health, and potential trade implications were also identified by the working group as key issues. Addressing these challenges will be vital to enable genomic surveillance technology to reach its full potential for assessing the risk of transmission of AMR between the environment, animals, and humans at One Health interfaces.


Assuntos
Antibacterianos , Saúde Única , Animais , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Ecossistema , Genômica
11.
Lancet Microbe ; 4(12): e1047-e1055, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37977162

RESUMO

Historically, epidemiological investigation and surveillance for bacterial antimicrobial resistance (AMR) has relied on low-resolution isolate-based phenotypic analyses undertaken at local and national reference laboratories. Genomic sequencing has the potential to provide a far more high-resolution picture of AMR evolution and transmission, and is already beginning to revolutionise how public health surveillance networks monitor and tackle bacterial AMR. However, the routine integration of genomics in surveillance pipelines still has considerable barriers to overcome. In 2022, a workshop series and online consultation brought together international experts in AMR and pathogen genomics to assess the status of genomic applications for AMR surveillance in a range of settings. Here we focus on discussions around the use of genomics for public health and international AMR surveillance, noting the potential advantages of, and barriers to, implementation, and proposing recommendations from the working group to help to drive the adoption of genomics in public health AMR surveillance. These recommendations include the need to build capacity for genome sequencing and analysis, harmonising and standardising surveillance systems, developing equitable data sharing and governance frameworks, and strengthening interactions and relationships among stakeholders at multiple levels.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Humanos , Saúde Pública , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Genômica , Anti-Infecciosos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/epidemiologia , Infecções Bacterianas/microbiologia , Bactérias
12.
Lancet Microbe ; 4(12): e1035-e1039, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37977164

RESUMO

Nearly a century after the beginning of the antibiotic era, which has been associated with unparalleled improvements in human health and reductions in mortality associated with infection, the dwindling pipeline for new antibiotic classes coupled with the inevitable spread of antimicrobial resistance (AMR) poses a major global challenge. Historically, surveillance of bacteria with AMR typically relied on phenotypic analysis of isolates taken from infected individuals, which provides only a low-resolution view of the epidemiology behind an individual infection or wider outbreak. Recent years have seen increasing adoption of powerful new genomic technologies with the potential to revolutionise AMR surveillance by providing a high-resolution picture of the AMR profile of the bacteria causing infections and providing real-time actionable information for treating and preventing infection. However, many barriers remain to be overcome before genomic technologies can be adopted as a standard part of routine AMR surveillance around the world. Accordingly, the Surveillance and Epidemiology of Drug-resistant Infections Consortium convened an expert working group to assess the benefits and challenges of using genomics for AMR surveillance. In this Series, we detail these discussions and provide recommendations from the working group that can help to realise the massive potential benefits for genomics in surveillance of AMR.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Infecções Bacterianas/tratamento farmacológico , Genômica
13.
Parasitol Res ; 110(1): 61-71, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21626425

RESUMO

Mosquitoes (Diptera: Culicidae) are important vectors of human disease-causing pathogens. Mosquitoes are found both in rural and urban areas. Deteriorating infrastructure, poor access to health, water and sanitation services, increasing population density, and widespread poverty contribute to conditions that modify the environment, which directly influences the risk of disease within the urban and peri-urban ecosystem. The objective of this study was to evaluate the mosquito vector abundance and diversity in urban, peri-urban, and rural strata in Malindi along the Kenya coast. The study was conducted in the coastal district of Malindi between January and December 2005. Three strata were selected which were described as urban, peri-urban, and rural. Sampling was done during the wet and dry seasons. Sampling in the wet season was done in the months of April and June to cover the long rainy season and in November and December to cover the short rainy season, while the dry season was between January and March and September and October. Adult mosquito collection was done using Pyrethrum Spray Collection (PSC) and Centers for Disease Control and Prevention (CDC) light traps inside houses and specimens were identified morphologically. In the three strata (urban, peri-urban, and rural), 78.5% of the total mosquito (n = 7,775) were collected using PSC while 18.1% (n = 1,795) were collected using the CDC light traps. Using oviposition traps, mosquito eggs were collected and reared in the insectary which yielded 329 adults of which 83.8% (n = 276) were Aedes aegypti and 16.2% (n = 53) were Culex quinquefasciatus. The mosquito distribution in the three sites varied significantly in each collection site. Anopheles gambiae, Anopheles funestus and Anopheles coustani were predominant in the rural stratum while C. quinquefasciatus was mostly found in urban and peri-urban strata. However, using PSC and CDC light trap collection techniques, A. aegypti was only found in urban strata. In the three strata, mosquitoes were mainly found in high numbers during the wet season. Further, A. gambiae, C. quinquefasciatus, and A. aegypti mosquitoes were found occurring together inside the houses. This in turn exposes the inhabitants to an array of mosquito-borne diseases including malaria, bancroftian filariasis, and arboviruses (dengue fever, Yellow fever, Rift Valley fever, Chikungunya fever, and West Nile Virus). In conclusion, our findings provide useful information for the design of integrated mosquito and disease control programs in East African environments.


Assuntos
Aedes/crescimento & desenvolvimento , Anopheles/crescimento & desenvolvimento , Biodiversidade , Culex/crescimento & desenvolvimento , Vetores de Doenças , Aedes/classificação , Animais , Anopheles/classificação , Culex/classificação , Transmissão de Doença Infecciosa , Humanos , Quênia , Estações do Ano
14.
Parasit Vectors ; 15(1): 430, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36384974

RESUMO

BACKGROUND: Estimation of the composition and densities of mosquito species populations is crucial for monitoring the epidemiology of mosquito-borne diseases and provide information on local vectors to public health officials and policy-makers. The aim of this study was to evaluate malaria vector bionomics in ecologically distinct sites in Taita-Taveta County, Kenya. METHODS: Adult mosquitoes were collected using backpack aspirators and paired indoor/outdoor CDC light traps in 10 randomly selected households in six villages with distinct ecologies over a study period of 3 years. All Anopheles mosquitoes were morphotyped, and sibling species of Anopheles gambiae sensu lato (An. gambiae s.l.) were identified and separated by PCR analysis of extracted ribosomal DNA. All female anophelines were tested for sporozoite infectivity, with engorged females screened for blood-meal sources using the enzyme-linked immunosorbent assay technique. A subsample of those testing positive and those testing negative for Plasmodium in the ELISA were subjected to PCR assay. RESULTS: A total of eight different Anopheles species were collected both indoors and outdoors. Anopheles gambiae s.l. (82.6%, n = 5252) was the predominant species sensu lato, followed by Anopheles coustani sensu lato (An. coustani s.l.; (10.5%, n = 666) and Anopheles funestus sensu lato (An. funestus s.l.; 5.6%, n = 357). A subset of 683 mosquito samples representing An. gambiae s.l. (n = 580, approx. 11.0%) and An. funestus s.l. (n = 103, approx. 28.9%) were identified by molecular diagnostic assays into sibling species. The An. gambiae s.l. complex was composed of Anopheles arabiensis (62.5%, n = 363/580), An. gambiae sensu stricto (An. gambiae s.s.; 0.7%, n = 4/580), Anopheles merus (0.7%, n = 4/580) and Anopheles quadriannulatus (0.2%, n = 1/580), with the remaining samples (35.5%, n = 206/580) unamplified. Anopheles funestus s.l. was composed of An. rivulorum (14.6%, n = 15/103) and An. leesoni (11.6%, n = 12/103); the remaining samples were unamplified (73.8%, n = 76/103). A total of 981 samples were subjected to PCR analysis for malaria parasite detection; of these 16 (1.6%) were confirmed to be positive for Plasmodium falciparum. The overall human blood index was 0.13 (32/238). CONCLUSIONS: Anopheles gambiae, An. funestus and An. coustani are key malaria vectors in the Taveta region of Kenya, showing concurrent indoor and outdoor transmission. All of the vectors tested showed a higher propensity for bovine and goat blood than for human blood.


Assuntos
Anopheles , Malária , Bovinos , Animais , Feminino , Humanos , Quênia/epidemiologia , Anopheles/genética , Malária/epidemiologia , Mosquitos Vetores/parasitologia , Ecologia , Cabras
15.
Trop Med Infect Dis ; 6(4)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34698282

RESUMO

Antibiotic resistance and its mechanisms have been known for over six decades, but global efforts to characterize its routine drivers have only gained momentum in the recent past. Drivers of clinical and community resistance go beyond just clinical practice, which is why one-health approaches offer the most realistic option for controlling antibiotic resistance. It is noteworthy that the emergence of resistance occurs naturally in the environment, but akin to climate change, the current accelerated emergence and spread bears hallmarks of anthropomorphic influence. If left unchecked, this can undo the medical and agricultural advancements of the last century. The WHO recommends that nations develop, adopt, and implement strategies that track the changing trends in antibiotic resistance levels to tackle this problem. This article examines efforts and progress in developing and implementing a human health antimicrobial resistance surveillance strategy in Uganda. We do so within the context of the National Action Plan for tackling antimicrobial resistance (AMR-NAP) launched in 2018. We discuss the technical milestones and progress in implementing surveillance of GLASS priority pathogens under this framework. The preliminary output of the framework examines the performance and compares AMR and AMU surveillance data to explain observed trends. We conclude that Uganda is making progress in developing and implementing a functional AMR surveillance strategy for human health.

16.
J R Soc Interface ; 16(153): 20180941, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30966952

RESUMO

Vector-borne disease control relies on efficient vector surveillance, mostly carried out using traps whose number and locations are often determined by expert opinion rather than a rigorous quantitative sampling design. In this work we propose a framework for ecological sampling design which in its preliminary stages can take into account environmental conditions obtained from open data (i.e. remote sensing and meteorological stations) not necessarily designed for ecological analysis. These environmental data are used to delimit the area into ecologically homogeneous strata. By employing Bayesian statistics within a model-based sampling design, the traps are deployed among the strata using a mixture of random and grid locations which allows balancing predictions and model-fitting accuracies. Sample sizes and the effect of ecological strata on sample sizes are estimated from previous mosquito sampling campaigns open data. Notably, we found that a configuration of 30 locations with four households each (120 samples) will have a similar accuracy in the predictions of mosquito abundance as 200 random samples. In addition, we show that random sampling independently from ecological strata, produces biased estimates of the mosquito abundance. Finally, we propose standardizing reporting of sampling designs to allow transparency and repetition/re-use in subsequent sampling campaigns.


Assuntos
Distribuição Animal , Anopheles/fisiologia , Malária/transmissão , Mosquitos Vetores/fisiologia , Animais , Anopheles/efeitos dos fármacos , Ecossistema , Resistência a Inseticidas , Inseticidas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Projetos de Pesquisa
17.
Nat Commun ; 10(1): 1433, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926893

RESUMO

Malaria infections occurring below the limit of detection of standard diagnostics are common in all endemic settings. However, key questions remain surrounding their contribution to sustaining transmission and whether they need to be detected and targeted to achieve malaria elimination. In this study we analyse a range of malaria datasets to quantify the density, detectability, course of infection and infectiousness of subpatent infections. Asymptomatically infected individuals have lower parasite densities on average in low transmission settings compared to individuals in higher transmission settings. In cohort studies, subpatent infections are found to be predictive of future periods of patent infection and in membrane feeding studies, individuals infected with subpatent asexual parasite densities are found to be approximately a third as infectious to mosquitoes as individuals with patent (asexual parasite) infection. These results indicate that subpatent infections contribute to the infectious reservoir, may be long lasting, and require more sensitive diagnostics to detect them in lower transmission settings.


Assuntos
Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Parasitos/fisiologia , Plasmodium falciparum/fisiologia , Animais , Células Germinativas/metabolismo , Humanos , Parasitemia/parasitologia , Probabilidade , Fatores de Tempo
19.
J Am Mosq Control Assoc ; 24(4): 538-42, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19181062

RESUMO

The efficacy and persistence of 2 bacterial larvicides, Vectobac-DT (Bacillus thuringiensis israelensis [Bti]) and CulinexCombi (Bti and Bacillus sphaericus [Bs]), were tested against Anopheles gambiae and Culex quinquefasciatus in temporarily unused swimming pools with rainwater in Malindi, Kenya. Pre- and posttreatment larval densities were recorded by sampling with the standard WHO dipping technique for 8 consecutive days. The larvicides were applied to the pools with a knapsack sprayer. The data showed that Vectobac-DT was highly effective against early instars of An. gambiae with 89% reduction within 24 h but not as effective against the early stages of Cx. quinquefasciatus with reduction of only 46%. CulinexCombi resulted in high mortalities to early instars of both species with over 97% reduction within 24 h, but showed a drastic reduction 48 h after application. Both Vectobac-DT and CulinexCombi were highly effective against late instars of both species, whereby Vectobac-DT persisted much longer than CulinexCombi. Anopheles gambiae was found to be more susceptible to both larvicides than Cx. quinquefasciatus. By their high efficacy and good persistence against mosquito larvae, both Vectobac-DT and CulinexCombi can be recommended for use in integrated mosquito control programs.


Assuntos
Anopheles , Bacillus , Culex , Controle de Mosquitos/métodos , Controle Biológico de Vetores , Piscinas , Animais , Anopheles/crescimento & desenvolvimento , Culex/crescimento & desenvolvimento , Quênia , Larva
20.
J Med Entomol ; 44(6): 923-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18047189

RESUMO

Mark-release-recapture (MRR) experiments were conducted with emerging Anopheles gambiae s.l. and Anophelesfunestus Giles at Jaribuni and Mtepeni in Kilifi, along the Kenyan Coast. Of 739 and 1246 Anopheles released at Jaribuni and Mtepeni, 24.6 and 4.33% were recaptured, respectively. The daily survival probability was 0.96 for An. funestus and 0.95 for An. gambiae in Jaribuni and 0.83 and 0.95, respectively, in Mtepeni. The maximum flight distance recorded was 661 m. The high survival probability of An. gambiae and An. funestus estimated accounts for the continuous transmission of malaria along the Kenyan coast. This study also shows that the release of young, emergent female Anopheles improves the recapture rates and may be a better approach to MRR studies.


Assuntos
Anopheles/fisiologia , Animais , Feminino , Quênia , Larva , Longevidade , Dinâmica Populacional , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA