Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acc Chem Res ; 48(4): 1021-31, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25763601

RESUMO

Activation of unsaturated carbon-carbon bonds by means of transition metal catalysts is an exceptionally active research field in organic synthesis. In this context, due to their high ring strain, cyclopropenes constitute an interesting class of substrates that displays a versatile reactivity in the presence of transition metal catalysts. Metal complexes of vinyl carbenes are involved as key intermediates in a wide variety of transition metal-catalyzed ring-opening reactions of cyclopropenes. Most of the reported transformations rely on intermolecular or intramolecular addition of nucleophiles to these latter reactive species. This Account focuses specifically on the reactivity of carbenoids resulting from the ring-opening of cyclopropenes in cyclopropanation and C-H insertion reactions, which are arguably two of the most representative transformations of metal complexes of carbenes. Compared with the more conventional α-diazo carbonyl compounds, the use of cyclopropenes as precursors of metal carbenoids in intramolecular cyclopropanation or C-H insertion reactions has been largely underexploited. One of the challenges is to devise appropriately substituted and readily available cyclopropenes that would not only undergo regioselective ring-opening under mild conditions but also trigger the subsequent desired transformations with a high level of chemoselectivity and stereoselectivity. These goals were met by considering several substrates derived from the readily available 3,3-dimethylcyclopropenylcarbinols or 3,3-dimethylcyclopropenylcarbinyl amines. In the case of 1,6-cyclopropene-enes, highly efficient and diastereoselective gold(I)-catalyzed ring-opening/intramolecular cyclopropanations were developed as a route to diversely substituted heterocycles and carbocycles possessing a bicyclo[4.1.0]heptane framework. The use of rhodium(II) catalysts enabled us to widen the scope of this transformation for the synthesis of medium-sized heterocyclic scaffolds incorporating an eight-membered ring. The reactivity of rhodium(II) carbenoids generated from 3,3-dimethylcyclopropenylcarbinols was also investigated in intramolecular C(sp(3))-H insertions. Despite their low electrophilic character, these purely donor rhodium(II) carbenoids underwent remarkably efficient diastereoselective 1,5- or 1,6-C-H insertions allowing access to a wide variety of substituted cyclopentanols, cyclohexanols, bicycloalkanols, and tetrahydropyrans with high level of diastereoselectivity and with complete tolerance of a free hydroxyl group. The products arising from the gold(I)- or rhodium(II)-catalyzed ring-opening/intramolecular cyclopropanation or C-H insertion of 3,3-dimethylcyclopropenylcarbinols or 3,3-dimethylcyclopropenylcarbinyl amines always incorporate an isopropylidene moiety, which can potentially undergo subsequent oxidative cleavage into a carbonyl group without epimerization. By virtue of this operation, the 3,3-dimethylcyclopropenyl group formally behaves as a valuable surrogate for an α-diazoketone, with obvious advantages considering the ease of access to the corresponding substrates and that no hazardous reagents are involved in their preparation. These studies have set a useful basis for the development of other reaction pathways involving metal carbenoids generated from these readily available families of substituted cyclopropenes, including the investigation of the yet underexploited synthetic potential of purely donor rhodium(II) carbenoids.

2.
J Am Chem Soc ; 136(8): 3016-9, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24502188

RESUMO

A zinc-ProPhenol-catalyzed direct asymmetric aldol reaction between glycine Schiff bases and aldehydes is reported. The design and synthesis of new ProPhenol ligands bearing 2,5-trans-disubstituted pyrrolidines was essential for the success of this process. The transformation operates at room temperature and affords syn ß-hydroxy-α-amino esters in high yields with good to excellent levels of diastereo- and enantioselectivity.


Assuntos
Aldeídos/química , Ésteres/síntese química , Fenóis/química , Bases de Schiff/química , Zinco/química , Catálise , Ligantes , Estrutura Molecular , Estereoisomerismo
3.
J Med Chem ; 66(15): 10694-10714, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37487467

RESUMO

Dual-specificity, tyrosine phosphorylation-regulated kinases (DYRKs) and cdc2-like kinases (CLKs) recently attracted attention due to their central involvement in various pathologies. We here describe a family of DYRK/CLK inhibitors derived from Leucettines and the marine natural product Leucettamine B. Forty-five N2-functionalized 2-aminoimidazolin-4-ones bearing a fused [6 + 5]-heteroarylmethylene were synthesized. Benzothiazol-6-ylmethylene was selected as the most potent residue among 15 different heteroarylmethylenes. 186 N2-substituted 2-aminoimidazolin-4-ones bearing a benzothiazol-6-ylmethylene, collectively named Leucettinibs, were synthesized and extensively characterized. Subnanomolar IC50 (0.5-20 nM on DYRK1A) inhibitors were identified and one Leucettinib was modeled in DYRK1A and co-crystallized with CLK1 and the weaker inhibited off-target CSNK2A1. Kinase-inactive isomers of Leucettinibs (>3-10 µM on DYRK1A), named iso-Leucettinibs, were synthesized and characterized as suitable negative control compounds for functional experiments. Leucettinibs, but not iso-Leucettinibs, inhibit the phosphorylation of DYRK1A substrates in cells. Leucettinibs provide new research tools and potential leads for further optimization toward therapeutic drug candidates.


Assuntos
Imidazóis , Poríferos , Animais , Fosforilação , Imidazóis/química , Poríferos/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química
4.
J Med Chem ; 66(23): 15648-15670, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38051674

RESUMO

Leucettinibs are substituted 2-aminoimidazolin-4-ones (inspired by the marine sponge natural product Leucettamine B) developed as pharmacological inhibitors of DYRK1A (dual-specificity, tyrosine phosphorylation-regulated kinase 1A), a therapeutic target for indications such as Down syndrome and Alzheimer's disease. Leucettinib-21 was selected as a drug candidate following extensive structure/activity studies and multiparametric evaluations. We here report its physicochemical properties (X-ray powder diffraction, differential scanning calorimetry, stability, solubility, crystal structure) and drug-like profile. Leucettinib-21's selectivity (analyzed by radiometric, fluorescence, interaction, thermal shift, residence time assays) reveals DYRK1A as the first target but also some "off-targets" which may contribute to the drug's biological effects. Leucettinib-21 was cocrystallized with CLK1 and modeled in the DYRK1A structure. Leucettinib-21 inhibits DYRK1A in cells (demonstrated by direct catalytic activity and phosphorylation levels of Thr286-cyclin D1 or Thr212-Tau). Leucettinib-21 corrects memory disorders in the Down syndrome mouse model Ts65Dn and is now entering safety/tolerance phase 1 clinical trials.


Assuntos
Doença de Alzheimer , Síndrome de Down , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Síndrome de Down/tratamento farmacológico , Fosforilação , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Imidazolidinas/química , Imidazolidinas/farmacologia
5.
Chemistry ; 18(25): 7810-22, 2012 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-22588697

RESUMO

The gold(I)-catalysed cycloisomerisation of appropriately substituted 1,6-cyclopropene-enes proceeds through regioselective electrophilic ring opening of the three-membered ring to generate an alkenyl gold carbenoid that achieves the intramolecular cyclopropanation of the remote olefin. This strategy allows straightforward, highly efficient and diastereoselective access to a variety of substituted 3-oxa- and 3-azabicyclo[4.1.0]heptanes, as well as to bicyclo[4.1.0]heptan-3-ol derivatives. Since the isopropylidene group in the resulting cycloisomerisation products can be subjected to ozonolysis, 3,3-dimethylcyclopropenes behave as interesting surrogates for α-diazoketones.


Assuntos
Compostos Aza/síntese química , Ciclopropanos/química , Ouro/química , Heptanos/síntese química , Cetonas/síntese química , Compostos Aza/química , Catálise , Técnicas de Química Combinatória , Heptanos/química , Cetonas/química , Estrutura Molecular , Estereoisomerismo
6.
J Med Chem ; 65(2): 1396-1417, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34928152

RESUMO

The protein kinase DYRK1A is involved in Alzheimer's disease, Down syndrome, diabetes, viral infections, and leukemia. Leucettines, a family of 2-aminoimidazolin-4-ones derived from the marine sponge alkaloid Leucettamine B, have been developed as pharmacological inhibitors of DYRKs (dual specificity, tyrosine phosphorylation regulated kinases) and CLKs (cdc2-like kinases). We report here on the synthesis and structure-activity relationship (SAR) of 68 Leucettines. Leucettines were tested on 11 purified kinases and in 5 cellular assays: (1) CLK1 pre-mRNA splicing, (2) Threonine-212-Tau phosphorylation, (3) glutamate-induced cell death, (4) autophagy and (5) antagonism of ligand-activated cannabinoid receptor CB1. The Leucettine SAR observed for DYRK1A is essentially identical for CLK1, CLK4, DYRK1B, and DYRK2. DYRK3 and CLK3 are less sensitive to Leucettines. In contrast, the cellular SAR highlights correlations between inhibition of specific kinase targets and some but not all cellular effects. Leucettines deserve further development as potential therapeutics against various diseases on the basis of their molecular targets and cellular effects.


Assuntos
Imidazóis/química , Imidazóis/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Splicing de RNA , Receptor CB1 de Canabinoide/antagonistas & inibidores , Animais , Autofagia , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Fosforilação , Relação Estrutura-Atividade
7.
Beilstein J Org Chem ; 7: 717-34, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21804867

RESUMO

Cyclopropenes as substrates entered the field of gold catalysis in 2008 and have proven to be valuable partners in a variety of gold-catalyzed reactions. The different contributions in this growing research area are summarized in this review.

10.
Org Lett ; 12(18): 4144-7, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20726564

RESUMO

Allyl 3,3-dimethylcyclopropenylcarbinyl ethers or sulfonamides undergo gold-catalyzed cycloisomerization leading to 5-isopropylidene-3-oxa- and 3-azabicyclo[4.1.0]heptanes in excellent yields and with high diastereoselectivities. These reactions constitute the first examples of intramolecular cyclopropanation of an alkene by a gold carbene generated by electrophilic ring opening of a cyclopropene in the presence of gold(I) chloride.

11.
Org Lett ; 12(2): 248-51, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19994906

RESUMO

Cyclopropenes substituted by an unsaturated side chain have been successfully involved in ring-rearrangement metatheses leading to heterocyclic compounds, thereby expanding the synthetic potential of metathesis reactions with this class of highly strained cycloalkenes.


Assuntos
Ciclopropanos/síntese química , Compostos Heterocíclicos/síntese química , Ciclização , Ciclopropanos/química , Compostos Heterocíclicos/química , Estrutura Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA