Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Phys Chem Chem Phys ; 14(47): 16267-78, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23132464

RESUMO

Adsorption of myoglobin (Mb), bovine serum albumin (BSA) and γ-globulin (GG) onto activated carbons (ACs) with different pore size distributions, and poly(vinyl alcohol) (PVA) monolithic cryogels containing AC particles was studied. The highest initial rate of Mb adsorption was observed for AC having the largest specific surface area (1939 m(2) g(-1)) and pore volume (1.82 cm(3) g(-1)). The adsorption kinetics of proteins was characterized by a bimodal shape of the distribution f(D) function of an effective diffusion coefficient. Adsorption isotherms of Mb and GG were of Freundlich type within the studied range of equilibrium concentrations (10-150 µg mL(-1)). The distributions of free energy of protein adsorption were bimodal and reflected both interactions with carbon surfaces and self-association of proteins. Adsorbed amounts of Mb were the highest among the proteins studied (up to 700 mg g(-1) carbon), which was attributed to the higher fraction of pores accessible for Mb. Incorporation of carbon particles into PVA-based cryogel resulted in macroporous monolithic composite materials (AC-PVA) exhibiting good flow-through properties. Scanning electron microscopy of the composites showed macroporous aggregates of carbon particles held together by films and bridges of PVA. The rates of adsorption and adsorbed amounts of proteins on AC-PVA were reduced compared to the pristine carbon and depended on the carbon content in the composites. Nevertheless, adsorption of Mb on AC-PVA took place even in the presence of 500-fold higher concentration of BSA. This indicated a possibility of Mb clearance from blood plasma using the PVA-carbon monoliths.


Assuntos
Carvão Vegetal/química , Criogéis/química , Mioglobina/isolamento & purificação , Álcool de Polivinil/química , Soroalbumina Bovina/isolamento & purificação , gama-Globulinas/isolamento & purificação , Adsorção , Animais , Bovinos , Cavalos , Porosidade
2.
Phys Chem Chem Phys ; 13(10): 4476-85, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21258685

RESUMO

Quasi-elastic light scattering (QELS) and quartz crystal microbalance (QCM) non-equilibrium and equilibrium studies of competitive interactions of pairs of polymers and proteins with fumed silica and ceramic coatings deposited on QCM crystals show complex interfacial behaviour. The effects observed depend on the adsorption sequence of co-adsorbates, their chemical structure and the morphology and chemical structure of the adsorbent. The equilibrium adsorption and dynamics of interactions of macromolecules with bare adsorbent surface and surface covered with pre-adsorbed polymer or protein, are compared in terms of the distribution functions of the Gibbs free energy of adsorption, which varied from -25 kJ mol(-1) on a bare surface to almost 0 kJ mol(-1) on a polymer or protein coated surface.


Assuntos
Proteínas/química , Adsorção , Animais , Bovinos , Humanos , Cinética , Luz , Modelos Moleculares , Nanoestruturas/química , Polímeros/química , Conformação Proteica , Espalhamento de Radiação , Dióxido de Silício/química , Propriedades de Superfície
3.
J Mater Chem B ; 8(19): 4267-4277, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32301952

RESUMO

Nitric oxide NO, mediates inflammatory and thrombotic processes and designing biomaterials capable of releasing NO in contact with biological tissues is considered to be a major factor aimed at improving their bio- and haemocompatibility and antibacterial properties. Their NO-releasing capacity however is limited by the amount of the NO-containing substance incorporated in the bulk or immobilised on the surface of a biomaterial. An alternative approach is based on the design of a material generating nitric oxide from endogenous NO bearing metabolites by their catalytic decomposition. It offers, at least in theory, an unlimited source of NO for as long as the material remains in contact with blood and the catalyst maintains its activity. In this paper we studied the catalytic properties of novel nanostructured CuO/SiO2 catalysts in generating NO by decomposition of S-nitrosoglutathione (GSNO) in vitro. CuO/SiO2 catalysts with different CuO loadings were synthesized by chemisorption of copper(ii) acetylacetonate on fumed nanosilica followed by calcination. CuO content was controlled by a number of chemisorption-calcination cycles. Fourier-transform infrared spectroscopy and thermogravimetric analysis confirmed the formation of CuO/SiO2 nanoparticles (NPs) with particle size of CuO phase in the range from 71 to 88 nm. Scanning electron microscopy images revealed a uniform distribution of NPs without their sintering or agglomeration. All the materials of the CuO/SiO2 NP series exhibited NO-generating activity from GSNO confirmed by the Griess assay and by measuring the concentration of nitrite and nitrate anions in model solutions such as phosphate buffered saline and bovine serum. This activity is dependent on the material specific surface area and CuO exposure on the surface rather than CuO bulk content. The rate of NO production increased at higher initial concentration of the NO-bearing substrate studied in the range between 0.01 mM and 1.0 mM RSNO, which covers its physiological level. CuO/SiO2 NPs can be used to design polymers with NO generating properties at blood-biomaterial interface which are expected to have improved biocompatibility thus enhancing their potential for medical applications such as surgical tubing, peripheral venous catheters, auxiliary blood circulation devices and drug-eluting balloons.


Assuntos
Cobre/química , Nanoestruturas/química , Óxido Nítrico/síntese química , S-Nitrosotióis/química , Dióxido de Silício/química , Catálise , Estrutura Molecular , Óxido Nítrico/química , Tamanho da Partícula , Propriedades de Superfície
4.
Pharmaceutics ; 11(12)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817064

RESUMO

Macroporous scaffolds composed of chitosan (CHI), hydroxyapatite (HA), heparin (Hep), and polyvinyl alcohol (PVA) were prepared with a glutaraldehyde (GA) cross-linker by cryogelation. Addition of PVA to the reaction mixture slowed down the formation of a polyelectrolyte complex (PEC) between CHI and Hep, which allowed more thorough mixing, and resulted in the development of the homogeneous matrix structure. Freezing of the CHI-HA-GA and PVA-Hep-GA mixture led to the formation of a non-stoichiometric PEC between oppositely charged groups of CHI and Hep, which caused further efficient immobilization of bone morphogenic protein 2 (BMP-2) possible due to electrostatic interactions. It was shown that the obtained cryogel matrix released BMP-2 and supported the differentiation of rat bone marrow mesenchymal stem cells (rat BMSCs) into the osteogenic lineage. Rat BMSCs attached to cryogel loaded with BMP-2 and expressed osteocalcin in vitro. Obtained composite cryogel with PEC may have high potential for bone regeneration and tissue engineering applications.

5.
Acta Biomater ; 4(3): 686-96, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18082477

RESUMO

Degradation of a commercially available collagen-glycosaminoglycan dermal equivalent matrix was studied using electrochemical techniques. Degradation was accelerated by exposure to gamma radiation followed by storage at elevated temperatures or exposure to enzymes. The time-dependent diffusion of a small, electrochemically active, molecular probe, potassium ferrocyanide, through the matrix was monitored via changes in the oxidation peak currents of cyclic voltammograms. These measurements were made using a two-compartment diffusion chamber with the sample positioned well away from the working electrodes and a single-compartment electrode cell where the matrix was in direct contact with the working electrode. The relative merits of these two approaches are considered. Regardless of the approach chosen, amperometry appears well suited to monitoring progressive diffusivity changes through mechanically weak porous structures subject to different solution environments.


Assuntos
Eletroquímica/métodos , Alicerces Teciduais , Soluções Tampão , Colágeno/metabolismo , Colagenases/metabolismo , Difusão/efeitos dos fármacos , Eletrodos , Eletrólitos , Ferrocianetos/farmacologia , Glicosaminoglicanos/metabolismo , Concentração de Íons de Hidrogênio , Membranas Artificiais , Microscopia Eletrônica de Varredura , Oxirredução/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Porosidade/efeitos dos fármacos , Soluções , Fatores de Tempo
6.
ACS Appl Bio Mater ; 1(2): 436-443, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35016373

RESUMO

There is a range of medical conditions, which include acute organ failure, bacterial and viral infection, and sepsis, that result in overactivation of the inflammatory response of the organism and release of proinflammatory cytokines into the bloodstream. Fast removal of these cytokines from blood circulation could offer a potentially efficient treatment of such conditions. This study aims at the development and assessment of novel biocompatible graphene-based adsorbents for blood purification from proinflammatory cytokines. These graphene-based materials were chosen on the basis of their surface accessibility for small molecules further facilitated by the interlayer porosity, which is comparable to the size of the cytokine molecules to be adsorbed. Our preliminary results show that graphene nanoplatelets (GnP) exhibit high adsorption capacity, but they cannot be used in direct contact with blood due to the risk of small carbon particle release into the bloodstream. Granulation of GnP using poly(tetrafluoroethylene) as a binder eliminated an undesirable nanoparticle release without affecting the GnP surface accessibility for the cytokine molecules. The efficiency of proinflammatory cytokine removal was shown using a specially designed flow-through system. So far, GnP proved to be among the fastest acting and most efficient sorbents for cytokine removal identified to date, outperforming porous activated carbons and porous polymers.

7.
J Drug Target ; 25(1): 17-28, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27126681

RESUMO

Effective therapy lies in achieving a therapeutic amount of drug to the proper site in the body and then maintaining the desired drug concentration for a sufficient time interval to be clinically effective for treatment. The blood-brain barrier (BBB) hinders most drugs from entering the central nervous system (CNS) from the blood stream, leading to the difficulty of delivering drugs to the brain via the circulatory system for the treatment, diagnosis and prevention of brain diseases. Several brain drug delivery approaches have been developed, such as intracerebral and intracerebroventricular administration, intranasal delivery and blood-to-brain delivery, as a result of transient BBB disruption induced by biological, chemical or physical stimuli such as zonula occludens toxin, mannitol, magnetic heating and ultrasound, but these approaches showed disadvantages of being dangerous, high cost and unsuitability for most brain diseases and drugs. The strategy of vector-mediated blood-to-brain delivery, which involves improving BBB permeability of the drug-carrier conjugate, can minimize side effects, such as being submicrometre objects that behave as a whole unit in terms of their transport and properties, nanomaterials, are promising carrier vehicles for direct drug transport across the intact BBB as a result of their potential to enter the brain capillary endothelial cells by means of normal endocytosis and transcytosis due to their small size, as well as their possibility of being functionalized with multiple copies of the drug molecule of interest. This review provids a concise discussion of nano carriers for drug transport across the intact BBB, various forms of nanomaterials including inorganic/solid lipid/polymeric nanoparticles, nanoemulsions, quantum dots, nanogels, liposomes, micelles, dendrimers, polymersomes and exosomes are critically evaluated, their mechanisms for drug transport across the BBB are reviewed, and the future directions of this area are fully discussed.


Assuntos
Barreira Hematoencefálica/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Nanopartículas/química , Preparações Farmacêuticas/administração & dosagem , Animais , Transporte Biológico , Dendrímeros/química , Dendrímeros/farmacocinética , Emulsões , Géis/química , Géis/farmacocinética , Humanos , Lipossomos , Micelas , Permeabilidade , Preparações Farmacêuticas/metabolismo
8.
Biomaterials ; 27(19): 3599-607, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16519934

RESUMO

The nanoporous structure of collagen-glycosaminoglycan (CG) hydrogels was studied using 1H NMR spectroscopy and thermally stimulated depolarisation (TSD) current with layer-by-layer freezing-out of bulk and interfacial water. The depression of the freezing point of water is related to the size of the nanopore, to which it is confined. Changes in the Gibbs free energy of the unfrozen interfacial water are related to the amount of bound water in the hydrogel matrix and to the re-arrangement of the 3D network structure of the biopolymer. Analysis of the thermodynamic properties of bulk and interfacial water using the layer-by-layer freezing-out technique combined with NMR and TSDC provides valuable information about the structural features of CG hydrogels that can be used for characterisation of different types of hydrogels and soft tissue scaffolds, artificial skin substitutes and other biomaterials.


Assuntos
Materiais Biocompatíveis , Colágeno , Glicosaminoglicanos , Animais , Materiais Biocompatíveis/química , Bovinos , Colágeno/química , Congelamento , Glicosaminoglicanos/química , Hidrogéis , Técnicas In Vitro , Espectroscopia de Ressonância Magnética , Teste de Materiais , Potenciais da Membrana , Microscopia Eletrônica de Varredura , Nanotecnologia , Pele Artificial , Termodinâmica , Água
9.
Thromb Haemost ; 92(5): 1032-9, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15543331

RESUMO

In order to study the haemocompatibility of metal and carbon coatings, fibrinogen adsorption and platelet adhesion to various coatings have been investigated. Two metallic coatings--titanium and zirconium, and two carbon coatings - isotropic diamond-like and isotropic graphite-like coatings, were prepared by plasma vapour deposition onto stainless steel substrate. It has been shown that the adsorption of fibrinogen to metal and carbon coatings and its post-adsorptive transition are dependent on both the material properties and the fibrinogen environment. The adsorption of fibrinogen from human plasma on titanium and zirconium coatings is similar to that on uncoated stainless steel surface. Both carbon coatings adsorb much greater amount of fibrinogen from plasma, and fibrinogen retention by carbon surfaces is also greater than by metal surfaces. Increased numbers of adhered platelets have been found on both carbon coatings in comparison to the metal materials, although this does not correlate with the amount of adsorbed fibrinogen.


Assuntos
Carbono , Materiais Revestidos Biocompatíveis , Fibrinogênio/química , Metais , Adesividade Plaquetária , Adsorção , Humanos , Microscopia Eletrônica de Varredura , Análise Espectral , Aço Inoxidável , Propriedades de Superfície , Titânio , Raios X , Zircônio
10.
Biochimie ; 105: 76-83, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25046629

RESUMO

The variety of enzymes including serine proteases that possess fibrin(ogen)olytic and platelet modulating activity have been discovered in different snake venoms. In our work the fibrin(ogen)olytic and platelet modulating activity of a new protease from Echis multisquamatis snake venom was studied. It was shown that purified enzyme cleaved the ВßR42-A43 bond of fibrinogen during first contact with the substrate following much slower hydrolysis of C-terminus of fibrinogen Aα-chain. Protease hydrolysed fibrin clot too, but at much slower rate and cleaved both C-terminus of Aα-chain and ВßR42-A43 bond of Bß-chain simultaneously. Preincubation of fibrinogen with protease dramatically elongated thrombin clotting time and the clot formed from a mixture of native fibrinogen and fibrinogen desВß(1-42)2 digested by plasmin much faster than a native fibrin clot. The protease did not activate platelets nor cause changes in their shape and granularity, but it reduced platelets aggregation induced by ADP.


Assuntos
Fibrinolíticos/isolamento & purificação , Serina Proteases/genética , Serina Proteases/isolamento & purificação , Venenos de Serpentes/enzimologia , Sequência de Aminoácidos , Animais , Fibrina/metabolismo , Fibrinogênio/química , Fibrinogênio/metabolismo , Fibrinolisina/metabolismo , Fibrinolíticos/química , Fibrinolíticos/farmacologia , Humanos , Agregação Plaquetária/efeitos dos fármacos , Serina Proteases/química , Viperidae
11.
J Biomed Mater Res B Appl Biomater ; 96(2): 333-41, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21210514

RESUMO

The in-vitro and in-vivo biocompatibility of two oxides (TiO and ZrO) and diamond-like carbon (D) coated stents has been assessed and compared with uncoated stainless steel (St) stents. In vitro studies demonstrated that both fibrinogen adsorption and platelet adhesion were significantly higher on D coating compared to those on oxide coatings and uncoated stainless steel. In addition TiO and ZrO coatings showed evidence of a minor inflammatory response and more complete endothelialization of the aorta than that seen around D coated and uncoated St stents. The resulting neointimal growth in the aorta with TiO, ZrO, and D coated and uncoated St stents, measured 8 weeks after stenting (the ratio of the neointima in the stented artery to the non-stented artery) was 1.03 + 0.28, 0.85 + 0.36, 1.78 + 1.26, and 1.15 + 0.56, accordingly. From the data obtained it could be concluded that the increased neointima measured around D-coated stents, may be due to both, the inferior haemocompatibility of the diamond-like carbon coating and mechanical instability of D coating observed in an in vivo environment.


Assuntos
Materiais Revestidos Biocompatíveis/química , Células Endoteliais/efeitos dos fármacos , Teste de Materiais , Adesividade Plaquetária/efeitos dos fármacos , Stents/normas , Animais , Aorta/citologia , Carbono , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/citologia , Fibrinogênio/metabolismo , Humanos , Neointima , Aço Inoxidável , Titânio , Zircônio
12.
J Mater Sci Mater Med ; 15(4): 473-7, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15332620

RESUMO

The deployment of a vascular stent during angioplasty has greatly reduced the risks of restenosis. However, the presence of the device still induces a host response as well as a mechanical action on the blood vessel wall and an alteration of the haemodynamics. Platelet and inflammatory cells can adhere on the stent surface and be activated to produce biochemical signals able to stimulate an excessive proliferation of the smooth muscle cells with the consequent obstruction of the vessel lumen. For these reasons, the host response to two of the materials used in stent manufacture, stainless steel and diamond-like carbon, was investigated in vitro. The data showed that stainless steel induced a higher level of host response both in terms of platelet aggregation and macrophage activation. However, the spreading of inflammatory cells was more accentuated on diamond-like carbon. The inflammatory cells produced levels of platelet-derived growth factor, a key signal in smooth muscle cell proliferation, similar to stainless steel thus suggesting that carbon coatings may not be able to prevent restenosis.


Assuntos
Prótese Vascular/efeitos adversos , Diamante/química , Reação a Corpo Estranho/etiologia , Reação a Corpo Estranho/imunologia , Teste de Materiais/métodos , Aço Inoxidável/química , Stents/efeitos adversos , Adsorção , Materiais Biocompatíveis/química , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Células Cultivadas , Reação a Corpo Estranho/metabolismo , Reação a Corpo Estranho/patologia , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/patologia , Ativação de Macrófagos/imunologia , Adesividade Plaquetária/imunologia , Agregação Plaquetária/imunologia , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA