Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Blood ; 137(2): 248-257, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-32842150

RESUMO

Plasminogen activation rates are enhanced by cell surface binding. We previously demonstrated that exogenous plasminogen binds to phosphatidylserine-exposing and spread platelets. Platelets contain plasminogen in their α-granules, but secretion of plasminogen from platelets has not been studied. Recently, a novel transmembrane lysine-dependent plasminogen receptor, Plg-RKT, has been described on macrophages. Here, we analyzed the pool of plasminogen in platelets and examined whether platelets express Plg-RKT. Plasminogen content of the supernatant of resting and collagen/thrombin-stimulated platelets was similar. Pretreatment with the lysine analog, ε-aminocaproic acid, significantly increased platelet-derived plasminogen (0.33 vs 0.08 nmol/108 platelets) in the stimulated supernatant, indicating a lysine-dependent mechanism of membrane retention. Lysine-dependent, platelet-derived plasminogen retention on thrombin and convulxin activated human platelets was confirmed by flow cytometry. Platelets initiated fibrinolytic activity in fluorescently labeled plasminogen-deficient clots and in turbidimetric clot lysis assays. A 17-kDa band, consistent with Plg-RKT, was detected in the platelet membrane fraction by western blotting. Confocal microscopy of stimulated platelets revealed Plg-RKT colocalized with platelet-derived plasminogen on the activated platelet membrane. Plasminogen exposure was significantly attenuated in thrombin- and convulxin-stimulated platelets from Plg-RKT-/- mice compared with Plg-RKT+/+ littermates. Membrane exposure of Plg-RKT was not dependent on plasminogen, as similar levels of the receptor were detected in plasminogen-/- platelets. These data highlight Plg-RKT as a novel plasminogen receptor in human and murine platelets. We show for the first time that platelet-derived plasminogen is retained on the activated platelet membrane and drives local fibrinolysis by enhancing cell surface-mediated plasminogen activation.


Assuntos
Plaquetas/metabolismo , Plasminogênio/metabolismo , Ativação Plaquetária/fisiologia , Receptores de Superfície Celular/metabolismo , Animais , Humanos , Camundongos
2.
Blood ; 134(6): 561-567, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31221672

RESUMO

Membrane-bound plasmin is used by immune cells to degrade extracellular matrices, which facilitates migration. The plasminogen receptor Plg-RKT is expressed by immune cells, including monocytes and macrophages. Among monocytes and macrophages, distinct subsets can be distinguished based on cell surface markers and pathophysiological function. We investigated expression of Plg-RKT by monocyte and macrophage subsets and whether potential differential expression might have functional consequences for cell migration. Proinflammatory CD14++CD16+ human monocytes and Ly6Chigh mouse monocytes expressed the highest levels of Plg-RKT and bound significantly more plasminogen compared with the other respective subsets. Proinflammatory human macrophages, generated by polarization with lipopolysaccharide and interferon-γ, showed significantly higher expression of Plg-RKT compared with alternatively activated macrophages, polarized with interleukin-4 and interleukin-13. Directional migration of proinflammatory monocytes was plasmin dependent and was abolished by anti-Plg-RKT monoclonal antibody, ε-amino-caproic acid, aprotinin, and the aminoterminal fragment of urokinase-type plasminogen activator. In an in vivo peritonitis model, significantly less Ly6Chigh monocyte recruitment was observed in Plg-RKT -/- compared with Plg-RKT +/+ mice. Immunohistochemical analysis of human carotid plaques and adipose tissue showed that proinflammatory macrophages also exhibited high levels of Plg-RKT in vivo. Our data demonstrate higher expression of Plg-RKT on proinflammatory monocyte and macrophage subsets that impacts their migratory capacity.


Assuntos
Regulação da Expressão Gênica , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Receptores de Superfície Celular/genética , Animais , Biomarcadores , Movimento Celular/imunologia , Matriz Extracelular/metabolismo , Humanos , Imunofenotipagem , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Camundongos
3.
Int J Mol Sci ; 22(4)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567773

RESUMO

The ability of cells to promote plasminogen activation on their surfaces is now well recognized, and several distinct cell surface proteins have been demonstrated to function as plasminogen receptors. Here, we review studies demonstrating that plasminogen bound to cells, in addition to plasminogen directly bound to fibrin, plays a major role in regulating fibrin surveillance. We focus on the ability of specific plasminogen receptors on eukaryotic cells to promote fibrinolysis in the in vivo setting by reviewing data obtained predominantly in murine models. Roles for distinct plasminogen receptors in fibrin surveillance in intravascular fibrinolysis, immune cell recruitment in the inflammatory response, wound healing, and lactational development are discussed.


Assuntos
Fibrina/metabolismo , Fibrinólise , Plasminogênio/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Humanos
4.
Blood ; 129(21): 2896-2907, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28320709

RESUMO

Inflammation resolution is an active process that functions to restore tissue homeostasis. The participation of the plasminogen (Plg)/plasmin (Pla) system in the productive phase of inflammation is well known, but its involvement in the resolution phase remains unclear. Therefore, we aimed to investigate the potential role of Plg/Pla in key events during the resolution of acute inflammation and its underlying mechanisms. Plg/Pla injection into the pleural cavity of BALB/c mice induced a time-dependent influx of mononuclear cells that were primarily macrophages of anti-inflammatory (M2 [F4/80high Gr1- CD11bhigh]) and proresolving (Mres [F4/80med CD11blow]) phenotypes, without changing the number of macrophages with a proinflammatory profile (M1 [F4/80low Gr1+ CD11bmed]). Pleural injection of Plg/Pla also increased M2 markers (CD206 and arginase-1) and secretory products (transforming growth factor ß and interleukin-6) and decreased the expression of inducible nitric oxide synthase (M1 marker). During the resolving phase of lipopolysaccharide (LPS)-induced inflammation when resolving macrophages predominate, we found increased Plg expression and Pla activity, further supporting a link between the Plg/Pla system and key cellular events in resolution. Indeed, Plg or Pla given at the peak of inflammation promoted resolution by decreasing neutrophil numbers and increasing neutrophil apoptosis and efferocytosis in a serine-protease inhibitor-sensitive manner. Next, we confirmed the ability of Plg/Pla to both promote efferocytosis and override the prosurvival effect of LPS via annexin A1. These findings suggest that Plg and Pla regulate several key steps in inflammation resolution, namely, neutrophil apoptosis, macrophage reprogramming, and efferocytosis, which have a major impact on the establishment of an efficient resolution process.


Assuntos
Anexina A1/metabolismo , Reprogramação Celular , Fibrinolisina/metabolismo , Macrófagos/metabolismo , Plasminogênio/metabolismo , Doença Aguda , Animais , Anexina A1/genética , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Fibrinolisina/genética , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neutrófilos/metabolismo , Neutrófilos/patologia , Plasminogênio/genética , Células RAW 264.7
5.
Blood ; 127(9): 1079-80, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26941388

RESUMO

In this issue of Blood, Motley et al have identified a novel and unexpected mechanism for clearance of extravascular fibrin that is accomplished by a specific proinflammatory macrophage population and is dependent upon active plasmin, yet independent of known fibrinogen receptors.


Assuntos
Endocitose , Fibrina/metabolismo , Macrófagos/metabolismo , Receptores CCR2/metabolismo , Animais
6.
Blood ; 124(5): 665-6, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25082858

RESUMO

In this issue of Blood, Das et al assign a very novel and unanticipated function to plasminogen by showing that it is an enhancer of the phagocytic function of macrophages.


Assuntos
Células de Kupffer/metabolismo , Macrófagos Peritoneais/metabolismo , Fagocitose/fisiologia , Plasminogênio/metabolismo , Animais
8.
Blood ; 120(3): 678-81, 2012 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-22649107

RESUMO

Binding of Glu-plasminogen (the native, circulating form of the zymogen) to cells results in enhancement of its activation. Cell-associated plasmin proteolytic activity is a key component of physiologic and pathologic processes requiring extracellular matrix degradation. Recently, we developed antiplasminogen mAbs that recognize receptor-induced binding sites (RIBS) in Glu-plasminogen and, therefore, preferentially react with cell-associated Glu-plasminogen in the presence of soluble Glu-plasminogen. Here we have used FACS with a representative antiplasminogen receptor-induced binding site mAb, mAb49, to examine whether plasminogen associates with peripheral blood cells in blood. Plasminogen binding to neutrophils, monocytes, B-lymphocytes, T-lymphocytes, and platelets was clearly detected. Treatment of whole blood with lipopolysaccharide or 12-0 tetradecanoylphorbol-13-acetate up-regulated plasminogen binding to neutrophils and in vivo treatment with all-trans retinoic acid decreased plasminogen binding to acute promyelocytic leukemia blasts. Our results demonstrate that mAb49 can be used to monitor cell-bound plasminogen in blood under both normal and pathologic conditions.


Assuntos
Anticorpos Monoclonais , Citometria de Fluxo/métodos , Leucemia Mieloide Aguda/diagnóstico , Plasminogênio/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Especificidade de Anticorpos/imunologia , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/imunologia , Carcinógenos/farmacologia , Eritrócitos/citologia , Humanos , Leucemia Mieloide Aguda/sangue , Leucemia Mieloide Aguda/imunologia , Leucemia Promielocítica Aguda/sangue , Leucemia Promielocítica Aguda/diagnóstico , Leucemia Promielocítica Aguda/imunologia , Lipopolissacarídeos/farmacologia , Linfócitos/citologia , Monócitos/citologia , Neutrófilos/citologia , Plasminogênio/metabolismo , Ensaio Radioligante/métodos , Acetato de Tetradecanoilforbol/farmacologia
9.
Mol Oncol ; 18(1): 113-135, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37971174

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal metastatic disease associated with robust activation of the coagulation and fibrinolytic systems. However, the potential contribution of the primary fibrinolytic protease plasminogen to PDAC disease progression has remained largely undefined. Mice bearing C57Bl/6-derived KPC (KRasG12D , TRP53R172H ) tumors displayed evidence of plasmin activity in the form of high plasmin-antiplasmin complexes and high plasmin generation potential relative to mice without tumors. Notably, plasminogen-deficient mice (Plg- ) had significantly diminished KPC tumor growth in subcutaneous and orthotopic implantation models. Moreover, the metastatic potential of KPC cells was significantly diminished in Plg- mice, which was linked to reduced early adhesion and/or survival of KPC tumor cells. The reduction in primary orthotopic KPC tumor growth in Plg- mice was associated with increased apoptosis, reduced accumulation of pro-tumor immune cells, and increased local proinflammatory cytokine production. Elimination of fibrin(ogen), the primary proteolytic target of plasmin, did not alter KPC primary tumor growth and resulted in only a modest reduction in metastatic potential. In contrast, deficiencies in the plasminogen receptors Plg-RKT or S100A10 in tumor cells significantly reduced tumor growth. Plg-RKT reduction in tumor cells, but not reduced S100A10, suppressed metastatic potential in a manner that mimicked plasminogen deficiency. Finally, tumor growth was also reduced in NSG mice subcutaneously or orthotopically implanted with patient-derived PDAC tumor cells in which circulating plasminogen was pharmacologically reduced. Collectively, these studies suggest that plasminogen promotes PDAC tumor growth and metastatic potential, in part through engaging plasminogen receptors on tumor cells.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Carcinoma Ductal Pancreático/patologia , Fibrinolisina , Neoplasias Pancreáticas/patologia , Plasminogênio
10.
Cell Rep ; 43(3): 113881, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38442019

RESUMO

An intriguing effect of short-term caloric restriction (CR) is the expansion of certain stem cell populations, including muscle stem cells (satellite cells), which facilitate an accelerated regenerative program after injury. Here, we utilized the MetRSL274G (MetRS) transgenic mouse to identify liver-secreted plasminogen as a candidate for regulating satellite cell expansion during short-term CR. Knockdown of circulating plasminogen prevents satellite cell expansion during short-term CR. Furthermore, loss of the plasminogen receptor KT (Plg-RKT) is also sufficient to prevent CR-related satellite cell expansion, consistent with direct signaling of plasminogen through the plasminogen receptor Plg-RKT/ERK kinase to promote proliferation of satellite cells. Importantly, we are able to replicate many of these findings in human participants from the CALERIE trial. Our results demonstrate that CR enhances liver protein secretion of plasminogen, which signals directly to the muscle satellite cell through Plg-RKT to promote proliferation and subsequent muscle resilience during CR.


Assuntos
Plasminogênio , Receptores de Superfície Celular , Camundongos , Animais , Humanos , Plasminogênio/metabolismo , Receptores de Superfície Celular/metabolismo , Restrição Calórica , Fígado/metabolismo , Camundongos Transgênicos , Serina Proteases , Proliferação de Células , Músculos/metabolismo
11.
Semin Thromb Hemost ; 39(4): 329-37, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23532575

RESUMO

The interaction of plasminogen with cell surfaces results in promotion of plasmin formation and retention on the cell surface. This results in arming cell surfaces with the broad-spectrum proteolytic activity of plasmin. Over the past quarter century, key functional consequences of the association of plasmin with the cell surface have been elucidated. Physiologic and pathophysiologic processes with plasmin-dependent cell migration as a central feature include inflammation, wound healing, oncogenesis, metastasis, myogenesis, and muscle regeneration. Cell surface plasmin also participates in neurite outgrowth and prohormone processing. Furthermore, plasmin-induced cell signaling also affects the functions of inflammatory cells, via production of cytokines, reactive oxygen species, and other mediators. Finally, plasminogen receptors regulate fibrinolysis. In this review, we highlight emerging data that shed light on longstanding controversies and raise new issues in the field. We focus on (1) the impact of the recent X-ray crystal structures of plasminogen and the development of antibodies that recognize cell-induced conformational changes in plasminogen on our understanding of the interaction of plasminogen with cells; (2) the relationship between apoptosis and plasminogen binding to cells; (3) the current status of our understanding of the molecular identity of plasminogen receptors and the discovery of a structurally unique novel plasminogen receptor, Plg-RKT; (4) the determinants of the interplay between distinct plasminogen receptors and cellular functions; and (5) new insights into the role of colocalization of plasminogen and plasminogen activator receptors on the cell surface.


Assuntos
Plasminogênio/metabolismo , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Fibrinolisina/metabolismo , Fibrinólise/fisiologia , Humanos , Dados de Sequência Molecular , Ativadores de Plasminogênio/metabolismo , Transdução de Sinais
12.
Blood ; 117(26): 7155-63, 2011 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-21596853

RESUMO

Recent studies suggest a crucial role for plasminogen activator inhibitor-1 (PAI-1) in mediating stress-induced hypercoagulability and thrombosis. However, the mechanisms by which PAI-1 is released by stress are not well-delineated. Here, we examined catecholaminergic neurosecretory cells for expression, trafficking, and release of PAI-1. PAI-1 was prominently expressed in PC12 pheochromocytoma cells and bovine adrenomedullary chromaffin cells as detected by Northern blotting, Western blotting, and specific PAI-1 ELISA. Sucrose gradient fractionation studies and immunoelectron microscopy demonstrated localization of PAI-1 to catecholamine storage vesicles. Secretogogue stimulation resulted in corelease of PAI-1 with catecholamines. Parallel increases in plasma PAI-1 and catecholamines were observed in response to acute sympathoadrenal activation by restraint stress in mice in vivo. Reverse fibrin zymography demonstrated free PAI-1 in cellular releasates. Detection of high molecular weight complexes by Western blotting, consistent with PAI-1 complexed with t-PA, as well as bands consistent with cleaved PAI-1, suggested that active PAI-1 was present. Modulation of PAI-1 levels by incubating PC12 cells with anti-PAI-1 IgG caused a marked decrease in nicotine-mediated catecholamine release. In summary, PAI-1 is expressed in chromaffin cells, sorted into the regulated pathway of secretion (into catecholamine storage vesicles), and coreleased, by exocytosis, with catecholamines in response to secretogogues.


Assuntos
Células Cromafins/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Vesículas Secretórias/metabolismo , Animais , Bovinos , Células Cultivadas , Células Cromafins/efeitos dos fármacos , Células Cromafins/ultraestrutura , Epinefrina/sangue , Epinefrina/metabolismo , Exocitose/efeitos dos fármacos , Fibrinólise , Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Peso Molecular , Norepinefrina/sangue , Norepinefrina/metabolismo , Células PC12 , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Inibidor 1 de Ativador de Plasminogênio/química , Inibidor 1 de Ativador de Plasminogênio/genética , Transporte Proteico , RNA Mensageiro/metabolismo , Ratos , Restrição Física , Vesículas Secretórias/efeitos dos fármacos , Vesículas Secretórias/ultraestrutura , Estresse Fisiológico , Ativador de Plasminogênio Tecidual/química , Ativador de Plasminogênio Tecidual/metabolismo
13.
Blood ; 118(20): 5622-30, 2011 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-21940822

RESUMO

Localization of plasmin on macrophages and activation of pro-MMP-9 play key roles in macrophage recruitment in the inflammatory response. These functions are promoted by plasminogen receptors exposing C-terminal basic residues on the macrophage surface. Recently, we identified a novel transmembrane plasminogen receptor, Plg-R(KT), which exposes a C-terminal lysine on the cell surface. In the present study, we investigated the role of Plg-R(KT) in macrophage invasion, chemotactic migration, and recruitment. Plg-R(KT) was prominently expressed in membranes of human peripheral blood monocytes and monocytoid cells. Plasminogen activation by urokinase-type plasminogen activator (uPA) was markedly inhibited (by 39%) by treatment with anti-Plg-R(KT) mAb. Treatment of monocytes with anti-Plg-R(KT) mAb substantially inhibited invasion through the representative matrix, Matrigel, in response to MCP-1 (by 54% compared with isotype control). Furthermore, chemotactic migration was also inhibited by treatment with anti-Plg-R(KT) mAb (by 64%). In a mouse model of thioglycollate-induced peritonitis, anti-Plg-R(KT) mAb markedly inhibited macrophage recruitment (by 58%), concomitant with a reduction in pro-MMP-9 activation in the inflamed peritoneum. Treatment with anti-Plg-R(KT) mAb did not further reduce the low level of macrophage recruitment in plasminogen-null mice. We conclude that Plg-R(KT) plays a key role in the plasminogen-dependent regulation of macrophage invasion, chemotactic migration, and recruitment in the inflammatory response.


Assuntos
Movimento Celular/imunologia , Macrófagos/citologia , Peritonite/imunologia , Plasminogênio/imunologia , Receptores de Superfície Celular/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Materiais Biocompatíveis , Movimento Celular/efeitos dos fármacos , Colágeno , Modelos Animais de Doenças , Combinação de Medicamentos , Feminino , Fibrinolisina/metabolismo , Fibrinolisina/farmacologia , Humanos , Laminina , Macrófagos/imunologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Monócitos/citologia , Monócitos/imunologia , Peritonite/induzido quimicamente , Peritonite/metabolismo , Plasminogênio/genética , Plasminogênio/metabolismo , Proteoglicanas , Receptores de Superfície Celular/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/imunologia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Tioglicolatos/toxicidade
14.
Blood ; 118(6): 1653-62, 2011 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-21680799

RESUMO

When Glu-plasminogen binds to cells, its activation to plasmin is markedly enhanced compared with the reaction in solution, suggesting that Glu-plasminogen on cell surfaces adopts a conformation distinct from that in solution. However, direct evidence for such conformational changes has not been obtained. Therefore, we developed anti-plasminogen mAbs to test the hypothesis that Glu-plasminogen undergoes conformational changes on its interaction with cells. Six anti-plasminogen mAbs (recognizing 3 distinct epitopes) that preferentially recognized receptor-induced binding sites (RIBS) in Glu-plasminogen were obtained. The mAbs also preferentially recognized Glu-plasminogen bound to the C-terminal peptide of the plasminogen receptor, Plg-R(KT), and to fibrin, plasmin-treated fibrinogen, and Matrigel. We used trypsin proteolysis, immunoaffinity chromatography, and tandem mass spectrometry and identified Glu-plasminogen sequences containing epitopes recognized by the anti-plasminogen-RIBS mAbs: a linear epitope within a domain linking kringles 1 and 2; a nonlinear epitope contained within the kringle 5 domain and the latent protease domain; and a nonlinear epitope contained within the N-terminal peptide of Glu-plasminogen and the latent protease domain. Our results identify neoepitopes latent in soluble Glu-plasminogen that become available when Glu-plasminogen binds to cells and demonstrate that binding of Glu-plasminogen to cells induces a conformational change in Glu-plasminogen distinct from that of Lys-Pg.


Assuntos
Anticorpos Monoclonais/metabolismo , Epitopos/metabolismo , Plasminogênio/metabolismo , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Anticorpos Monoclonais/imunologia , Sítios de Ligação , Western Blotting , Colágeno/imunologia , Colágeno/metabolismo , Combinação de Medicamentos , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Fibrina/imunologia , Fibrina/metabolismo , Fibrinogênio/imunologia , Fibrinogênio/metabolismo , Humanos , Kringles , Laminina/imunologia , Laminina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Plasminogênio/química , Plasminogênio/imunologia , Ligação Proteica , Conformação Proteica , Proteoglicanas/imunologia , Proteoglicanas/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/imunologia , Solubilidade , Espectrometria de Massas em Tandem , Células U937
15.
J Thromb Haemost ; 21(10): 2666-2678, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37495082

RESUMO

The plasminogen/plasmin (Plg/Pla) system, best known for its classical role in thrombolysis, has been recently highlighted as a regulator of other biological processes in mammals, including key steps involved in the resolution of inflammation. Inflammation resolution is a complex process coordinated by different cellular effectors, notably leukocytes, and active mediators, and is initiated shortly after the inflammatory response begins. Once the inflammatory insult is eliminated, an effective and timely engagement of proresolution programs prevents persistent inflammation, thereby avoiding excessive tissue damage, fibrosis, and the development of autoimmunity. Interestingly, recent studies demonstrate that Plg/Pla and their receptor, plasminogen receptor KT (Plg-RKT), regulate key steps in inflammation resolution. The number of studies investigating the involvement of the Plg/Pla system in these and other aspects of inflammation, including degradation of extracellular matrices, immune cell migration, wound healing, and skeletal growth and maintenance, highlights key roles of the Plg/Pla system during physiological and pathologic conditions. Here, we discuss robust evidence in the literature for the emerging roles of the Plg/Pla system in key steps of inflammation resolution. These findings suggest that dysregulation in Plg production and its activation plays a role in the pathogenesis of inflammatory diseases. Elucidating central mechanisms underlying the role of Plg/Pla in key steps of inflammation resolution either in preclinical models of inflammation or in human inflammatory conditions, can provide a rationale for the development of new pharmacologic interventions to promote resolution of inflammation, and open new pathways for the treatment of thromboinflammatory conditions.


Assuntos
Fibrinolisina , Plasminogênio , Animais , Humanos , Plasminogênio/metabolismo , Fibrinolisina/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Fibrinólise , Mamíferos/metabolismo
16.
Adipocyte ; 12(1): 2252729, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37642146

RESUMO

The plasminogen receptor, Plg-RKT, is a unique cell surface receptor that is broadly expressed in cells and tissues throughout the body. Plg-RKT localizes plasminogen on cell surfaces and promotes its activation to the broad-spectrum serine protease, plasmin. In this study, we show that overexpression of Plg-RKT protects mice from high fat diet (HFD)-induced adipose and metabolic dysfunction. During the first 10 weeks on the HFD, the body weights of mice that overexpressed Plg-RKT (Plg-RKT-OEX) were lower than those of control mice (CagRosaPlgRKT). After 10 weeks on the HFD, CagRosaPlgRKT and Plg-RKT-OEX mice had similar body weights. However, Plg-RKT-OEX mice showed a more metabolically favourable body composition phenotype. Plg-RKT-OEX mice also showed improved glucose tolerance and increased insulin sensitivity. We found that the improved metabolic functions of Plg-RKT-OEX mice were mechanistically associated with increased energy expenditure and activity, decreased proinflammatory adipose macrophages and decreased inflammation, elevated brown fat thermogenesis, and higher expression of adipose PPARγ and adiponectin. These findings suggest that Plg-RKT signalling promotes healthy adipose function via multiple mechanisms to defend against obesity-associated adverse metabolic phenotypes.


Assuntos
Obesidade , Serina Proteases , Animais , Camundongos , Camundongos Obesos , Obesidade/etiologia , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Homeostase , Plasminogênio , Glucose
17.
JCI Insight ; 8(8)2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36917195

RESUMO

Sepsis is a lethal syndrome characterized by systemic inflammation and abnormal coagulation. Despite therapeutic advances, sepsis mortality remains substantially high. Herein, we investigated the role of the plasminogen/plasmin (Plg/Pla) system during sepsis. Plasma levels of Plg were significantly lower in mice subjected to severe compared with nonsevere sepsis, whereas systemic levels of IL-6, a marker of sepsis severity, were higher in severe sepsis. Plg levels correlated negatively with IL-6 in both septic mice and patients, whereas plasminogen activator inhibitor-1 levels correlated positively with IL-6. Plg deficiency render mice susceptible to nonsevere sepsis induced by cecal ligation and puncture (CLP), resulting in greater numbers of neutrophils and M1 macrophages, liver fibrin(ogen) deposition, lower efferocytosis, and increased IL-6 and neutrophil extracellular trap (NET) release associated with organ damage. Conversely, inflammatory features, fibrin(ogen), and organ damage were substantially reduced, and efferocytosis was increased by exogenous Pla given during CLP- and LPS-induced endotoxemia. Plg or Pla protected mice from sepsis-induced lethality and enhanced the protective effect of antibiotics. Mechanistically, Plg/Pla-afforded protection was associated with regulation of NET release, requiring Pla-protease activity and lysine binding sites. Plg/Pla are important host-protective players during sepsis, controlling local and systemic inflammation and collateral organ damage.


Assuntos
Armadilhas Extracelulares , Sepse , Camundongos , Animais , Fibrinolisina , Plasminogênio , Armadilhas Extracelulares/metabolismo , Interleucina-6/metabolismo , Inflamação/metabolismo , Sepse/metabolismo , Fibrina/metabolismo
18.
J Biol Chem ; 286(38): 33125-33, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21795689

RESUMO

Neurotransmitter release by catecholaminergic cells is negatively regulated by prohormone cleavage products formed from plasmin-mediated proteolysis. Here, we investigated the expression and subcellular localization of Plg-R(KT), a novel plasminogen receptor, and its role in catecholaminergic cell plasminogen activation and regulation of catecholamine release. Prominent staining with anti-Plg-R(KT) mAb was observed in adrenal medullary chromaffin cells in murine and human tissue. In Western blotting, Plg-R(KT) was highly expressed in bovine adrenomedullary chromaffin cells, human pheochromocytoma tissue, PC12 pheochromocytoma cells, and murine hippocampus. Expression of Plg-R(KT) fused in-frame to GFP resulted in targeting of the GFP signal to the cell membrane. Phase partitioning, co-immunoprecipitation with urokinase-type plasminogen activator receptor (uPAR), and FACS analysis with antibody directed against the C terminus of Plg-R(KT) were consistent with Plg-R(KT) being an integral plasma membrane protein on the surface of catecholaminergic cells. Cells stably overexpressing Plg-R(KT) exhibited substantial enhancement of plasminogen activation, and antibody blockade of non-transfected PC12 cells suppressed plasminogen activation. In functional secretion assays, nicotine-evoked [(3)H]norepinephrine release from cells overexpressing Plg-R(KT) was markedly decreased (by 51 ± 2%, p < 0.001) when compared with control transfected cells, and antibody blockade increased [(3)H]norepinephrine release from non-transfected PC12 cells. In summary, Plg-R(KT) is present on the surface of catecholaminergic cells and functions to stimulate plasminogen activation and modulate catecholamine release. Plg-R(KT) thus represents a new mechanism and novel control point for regulating the interface between plasminogen activation and neurosecretory cell function.


Assuntos
Catecolaminas/metabolismo , Plasminogênio/metabolismo , Receptores de Superfície Celular/metabolismo , Medula Suprarrenal/citologia , Medula Suprarrenal/efeitos dos fármacos , Medula Suprarrenal/metabolismo , Animais , Anticorpos/farmacologia , Bovinos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Ativação Enzimática/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Células PC12 , Transporte Proteico/efeitos dos fármacos , Ratos , Receptores de Superfície Celular/antagonistas & inibidores
19.
Blood ; 115(7): 1319-30, 2010 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-19897580

RESUMO

Activation of plasminogen, the zymogen of the primary thrombolytic enzyme, plasmin, is markedly promoted when plasminogen is bound to cell surfaces, arming cells with the broad spectrum proteolytic activity of plasmin. In addition to its role in thrombolysis, cell surface plasmin facilitates a wide array of physiologic and pathologic processes. Carboxypeptidase B-sensitive plasminogen binding sites promote plasminogen activation on eukaryotic cells. However, no integral membrane plasminogen receptors exposing carboxyl terminal basic residues on cell surfaces have been identified. Here we use the exquisite sensitivity of multidimensional protein identification technology and an inducible progenitor cell line to identify a novel differentiation-induced integral membrane plasminogen receptor that exposes a C-terminal lysine on the cell surface, Plg-R(KT) (C9orf46 homolog). Plg-R(KT) was highly colocalized on the cell surface with the urokinase receptor, uPAR. Our data suggest that Plg-R(KT) also interacts directly with tissue plasminogen activator. Furthermore, Plg-R(KT) markedly promoted cell surface plasminogen activation. Database searching revealed that Plg-R(KT) mRNA is broadly expressed by migratory cell types, including leukocytes, and breast cancer, leukemic, and neuronal cells. This structurally unique plasminogen receptor represents a novel control point for regulating cell surface proteolysis.


Assuntos
Plasminogênio/metabolismo , Proteômica , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Diferenciação Celular/fisiologia , Células Cultivadas , Detergentes , Proteínas de Homeodomínio/metabolismo , Humanos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Dados de Sequência Molecular , Monócitos/citologia , Monócitos/metabolismo , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/química , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
20.
J Biomed Biotechnol ; 2012: 250464, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23125524

RESUMO

When plasminogen binds to cells its activation to plasmin is markedly enhanced compared to the reaction in solution. Thus, cells become armed with the broad spectrum proteolytic activity of plasmin. Cell-surface plasmin plays a key role in macrophage recruitment during the inflammatory response. Proteins exposing basic residues on the cell surface promote plasminogen activation on eukaryotic cells. We have used a proteomics approach combining targeted proteolysis with carboxypeptidase B and multidimensional protein identification technology, MudPIT, and a monocyte progenitor cell line to identify a novel transmembrane protein, the plasminogen receptor, Plg-R(KT). Plg-R(KT) exposes a C-terminal lysine on the cell surface in an orientation to bind plasminogen and promote plasminogen activation. Here we review the characteristics of this new protein, with regard to membrane topology, conservation of sequence across species, the role of its C-terminus in plasminogen binding, its function in plasminogen activation, cell migration, and its role in macrophage recruitment in the inflammatory response.


Assuntos
Macrófagos/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Sequência de Aminoácidos , Animais , Sequência Conservada , Humanos , Inflamação/metabolismo , Inflamação/patologia , Lisina/metabolismo , Macrófagos/citologia , Dados de Sequência Molecular , Plasminogênio/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/química , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA