Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Plant Cell Physiol ; 58(8): 1339-1349, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28961989

RESUMO

Light is most important to plants as it fuels photosynthesis and provides clues about the environment. If provided in unnatural long photoperiods, however, it can be harmful and even lethal. Tomato (Solanum lycopersicum), for example, develops mottled chlorosis and necrosis when exposed to continuous light. Understanding the mechanism of these injuries is valuable, as important pathways regulating photosynthesis, such as circadian, retrograde and light signaling pathways are probably involved. Here, we use non-targeted metabolomics and transcriptomics analysis as well as hypothesis-driven experiments with continuous light-tolerant and -sensitive tomato lines to explore the long-standing proposed role of carbohydrate accumulation in this disorder. Analysis of metabolomics and transcriptomics data reveals a clear effect of continuous light on sugar metabolism and photosynthesis. A strong negative correlation between sucrose and starch content with the severity of continuous light-induced damage quantified as the maximum quantum efficiency of PSII (Fv/Fm) was found across several abnormal light/dark cycles, supporting the hypothesis that carbohydrates play an important role in the continuous light-induced injury. We postulate that the continuous light-induced injury in tomato is caused by down-regulation of photosynthesis, showing characteristics of both cytokinin-regulated senescence and light-modulated retrograde signaling. Molecular mechanisms linking carbohydrate accumulation with down-regulation of carbon-fixing enzymes are discussed.


Assuntos
Complexo de Proteína do Fotossistema II/metabolismo , Solanum lycopersicum/fisiologia , Amido/metabolismo , Sacarose/metabolismo , Metabolismo dos Carboidratos , Ciclo do Carbono/fisiologia , Citocininas/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Genótipo , Fotoperíodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant Physiol ; 169(1): 194-208, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26041787

RESUMO

Upward leaf movement (hyponastic growth) is frequently observed in response to changing environmental conditions and can be induced by the phytohormone ethylene. Hyponasty results from differential growth (i.e. enhanced cell elongation at the proximal abaxial side of the petiole relative to the adaxial side). Here, we characterize Enhanced Hyponasty-d, an activation-tagged Arabidopsis (Arabidopsis thaliana) line with exaggerated hyponasty. This phenotype is associated with overexpression of the mitotic cyclin CYCLINA2;1 (CYCA2;1), which hints at a role for cell divisions in regulating hyponasty. Indeed, mathematical analysis suggested that the observed changes in abaxial cell elongation rates during ethylene treatment should result in a larger hyponastic amplitude than observed, unless a decrease in cell proliferation rate at the proximal abaxial side of the petiole relative to the adaxial side was implemented. Our model predicts that when this differential proliferation mechanism is disrupted by either ectopic overexpression or mutation of CYCA2;1, the hyponastic growth response becomes exaggerated. This is in accordance with experimental observations on CYCA2;1 overexpression lines and cyca2;1 knockouts. We therefore propose a bipartite mechanism controlling leaf movement: ethylene induces longitudinal cell expansion in the abaxial petiole epidermis to induce hyponasty and simultaneously affects its amplitude by controlling cell proliferation through CYCA2;1. Further corroborating the model, we found that ethylene treatment results in transcriptional down-regulation of A2-type CYCLINs and propose that this, and possibly other regulatory mechanisms affecting CYCA2;1, may contribute to this attenuation of hyponastic growth.


Assuntos
Arabidopsis/fisiologia , Ciclina A2/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Proliferação de Células , Ciclina A2/genética , Regulação para Baixo , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/fisiologia , Hipocótilo/efeitos da radiação , Luz , Modelos Biológicos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação
3.
Planta ; 241(1): 285-90, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25399350

RESUMO

Continuous light induces a potentially lethal injury in domesticated tomato (Solanum lycopersicum) plants. Recently, continuous-light tolerance was reported in several wild tomato species, yet the molecular mechanisms underpinning tolerance/sensitivity are still elusive. Here, we investigated from which part of the plant continuous-light tolerance originates and whether this trait acts systemically within the plant. By exposing grafted plants bearing both tolerant and sensitive shoots, the trait was functionally located in the shoot rather than the roots. Additionally, an increase in continuous-light tolerance was observed in sensitive plants when a continuous-light-tolerant shoot was grafted on it. Cultivation of greenhouse tomatoes under continuous light promises high yield increases. Our results show that to pursuit this, the trait should be bred into scion rather than rootstock lines. In addition, identifying the nature of the signal/molecule(s) and/or the mechanism of graft-induced, continuous-light tolerance can potentially result in a better understanding of important physiological processes like long-distance signaling.


Assuntos
Adaptação Fisiológica/efeitos da radiação , Produção Agrícola/métodos , Luz , Solanum lycopersicum/efeitos da radiação , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Padrões de Herança/genética , Padrões de Herança/fisiologia , Padrões de Herança/efeitos da radiação , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Raízes de Plantas/efeitos da radiação , Brotos de Planta/genética , Brotos de Planta/fisiologia , Brotos de Planta/efeitos da radiação , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos da radiação
4.
Planta ; 235(4): 677-85, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22009062

RESUMO

Upward leaf movement (hyponastic growth) is adopted by several plant species including Arabidopsis thaliana, as a mechanism to escape adverse growth conditions. Among the signals that trigger hyponastic growth are, the gaseous hormone ethylene, low light intensities, and supra-optimal temperatures (heat). Recent studies indicated that the defence-related phytohormones jasmonic acid (JA) and salicylic acid (SA) synthesized by the plant upon biotic infestation repress low light-induced hyponastic growth. The hyponastic growth response induced by high temperature (heat) treatment and upon application of the gaseous hormone ethylene is highly similar to the response induced by low light. To test if these environmental signals induce hyponastic growth via parallel pathways or converge downstream, we studied here the roles of Methyl-JA (MeJA) and SA on ethylene- and heat-induced hyponastic growth. For this, we used a time-lapse camera setup. Our study includes pharmacological application of MeJA and SA and biological infestation using the JA-inducing caterpillar Pieris rapae as well as mutants lacking JA or SA signalling components. The data demonstrate that MeJA is a positive, and SA, a negative regulator of ethylene-induced hyponastic growth and that both hormones repress the response to heat. Taking previous studies into account, we conclude that SA is the first among many tested components which is repressing hyponastic growth under all tested inductive environmental stimuli. However, since MeJA is a positive regulator of ethylene-induced hyponastic growth and is inhibiting low light- and heat-induced leaf movement, we conclude that defence hormones control hyponastic growth by affecting stimulus-specific signalling pathways.


Assuntos
Arabidopsis/fisiologia , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Salicilatos/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Etilenos/metabolismo , Temperatura Alta , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Salicilatos/metabolismo , Transdução de Sinais , Tropismo/efeitos dos fármacos
5.
PLoS Genet ; 5(9): e1000638, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19730687

RESUMO

Natural genetic variation in Arabidopsis thaliana exists for many traits and often reflects acclimation to local environments. Studying natural variation has proven valuable in the characterization of phenotypic traits and, in particular, in identifying genetic factors controlling these traits. It has been previously shown that chromatin compaction changes during development and biotic stress. To gain more insight into the genetic control of chromatin compaction, we investigated the nuclear phenotype of 21 selected Arabidopsis accessions from different geographic origins and habitats. We show natural variation in chromatin compaction and demonstrate a positive correlation with latitude of geographic origin. The level of compaction appeared to be dependent on light intensity. A novel approach, combining Quantitative Trait Locus (QTL) mapping and microscopic examination, pointed at PHYTOCHROME-B (PHYB) and HISTONE DEACETYLASE-6 (HDA6) as positive regulators of light-controlled chromatin compaction. Indeed, mutant analyses demonstrate that both factors affect global chromatin organization. HDA6, in addition, strongly promotes the light-mediated compaction of the Nucleolar Organizing Regions (NORs). The accession Cape Verde Islands-0 (Cvi-0), which shows sequence polymorphism in the PHYB gene and in the HDA6 promotor, resembles the hda6 mutant in having reduced chromatin compaction and decreased methylation levels of DNA and histone H3K9 at the NORs. We provide evidence that chromatin organization is controlled by light intensity. We propose that chromatin plasticity is associated with acclimation of Arabidopsis to its environment. The polymorphic alleles such as PHYB and HDA6 control this process.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Cromatina/metabolismo , Histona Desacetilases/metabolismo , Fitocromo B/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cromatina/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Histona Desacetilases/genética , Luz , Fitocromo B/genética
6.
Plant J ; 61(1): 83-95, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19796369

RESUMO

Plants can respond quickly and profoundly to detrimental changes in their environment. For example, Arabidopsis thaliana can induce an upward leaf movement response through differential petiole growth (hyponastic growth) to outgrow complete submergence. This response is induced by accumulation of the phytohormone ethylene in the plant. Currently, only limited information is available on how this response is molecularly controlled. In this study, we utilized quantitative trait loci (QTL) analysis of natural genetic variation among Arabidopsis accessions to isolate novel factors controlling constitutive petiole angles and ethylene-induced hyponastic growth. Analysis of mutants in various backgrounds and complementation analysis of naturally occurring mutant accessions provided evidence that the leucin-rich repeat receptor-like Ser/Thr kinase gene, ERECTA, controls ethylene-induced hyponastic growth. Moreover, ERECTA controls leaf positioning in the absence of ethylene treatment. Our data demonstrate that this is not due to altered ethylene production or sensitivity.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Etilenos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas Serina-Treonina Quinases/fisiologia , Receptores de Superfície Celular/fisiologia , Alelos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Dados de Sequência Molecular , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Locos de Características Quantitativas/genética , Receptores de Superfície Celular/genética , Análise de Sequência de DNA
7.
Plant Physiol ; 154(4): 1686-96, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20935177

RESUMO

Development and acclimation processes to the environment are associated with large-scale changes in chromatin compaction in Arabidopsis (Arabidopsis thaliana). Here, we studied the effects of light signals on chromatin organization. A decrease in light intensity induces a large-scale reduction in chromatin compaction. This low light response is reversible and shows strong natural genetic variation. Moreover, the degree of chromatin compaction is affected by light quality signals relevant for natural canopy shade. The photoreceptor CRYPTOCHROME2 appears a general positive regulator of low light-induced chromatin decompaction. Phytochrome B also controls light-induced chromatin organization, but its effect appears to be dependent on the genetic background. We present a model in which chromatin compaction is regulated by the light environment via CRYPTOCHROME2 protein abundance, which is controlled by phytochrome B action.


Assuntos
Arabidopsis/metabolismo , Cromatina/metabolismo , Criptocromos/fisiologia , Fotorreceptores de Plantas/fisiologia , Fitocromo B/fisiologia , Dados de Sequência Molecular
8.
Plant Physiol ; 151(3): 1446-58, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19741046

RESUMO

Plants react quickly and profoundly to changes in their environment. A sudden increase in temperature, for example, induces differential petiole growth-driven upward leaf movement (hyponastic growth) in Arabidopsis (Arabidopsis thaliana). We show that accessions that face the strongest fluctuations in diurnal temperature in their natural habitat are least sensitive for heat-induced hyponastic growth. This indicates that heat-induced hyponastic growth is a trait subject to natural selection. The response is induced with kinetics remarkably similar to ethylene- and low light-induced hyponasty in several accessions. Using pharmacological assays, transcript analysis, and mutant analyses, we demonstrate that ethylene and the photoreceptor protein phytochrome B are negative regulators of heat-induced hyponastic growth and that low light, phytochrome A, auxin, polar auxin transport, and abscisic acid are positive regulators of heat-induced hyponastic growth. Furthermore, auxin, auxin polar transport, phytochrome A, phytochrome B, and cryptochromes are required for a fast induction of heat-induced hyponastic growth.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Temperatura Alta , Luz , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Ácido Abscísico/metabolismo , Arabidopsis/genética , Criptocromos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Fitocromo A/metabolismo , Fitocromo B/metabolismo , RNA de Plantas/genética
9.
New Phytol ; 184(1): 141-152, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19558423

RESUMO

Environmental challenges such as low light intensity induce differential growth-driven upward leaf movement (hyponastic growth) in Arabidopsis thaliana. However, little is known about the physiological regulation of this response. Here, we studied how low light intensity is perceived and translated into a differential growth response in Arabidopsis. We used mutants defective in light, ethylene and auxin signaling, and in polar auxin transport, as well as chemical inhibitors, to analyze the mechanisms of low light intensity-induced differential growth. Our data indicate that photosynthesis-derived signals and blue light wavelengths affect petiole movements and that rapid induction of hyponasty by low light intensity involves functional cryptochromes 1 and 2, phytochrome-A and phytochrome-B photoreceptor proteins. The response is independent of ethylene signaling. Auxin and polar auxin transport, by contrast, play a role in low light intensity-induced differential petiole growth. We conclude that low light intensity-induced differential petiole growth requires blue light, auxin signaling and polar auxin transport and is, at least in part, genetically separate from well-characterized ethylene-induced differential growth.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Luz , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/efeitos da radiação , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/efeitos da radiação , Criptocromos , Etilenos/metabolismo , Flavoproteínas/metabolismo , Ácidos Indolacéticos/metabolismo , Transdução de Sinal Luminoso/efeitos dos fármacos , Transdução de Sinal Luminoso/efeitos da radiação , Compostos de Metilureia/farmacologia , Fitocromo/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/efeitos da radiação
10.
Front Plant Sci ; 10: 19, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30761166

RESUMO

Plants perceive and transduce information about light quantity, quality, direction and photoperiod via several photoreceptors and use it to adjust their growth and development. A role for photoreceptors has been hypothesized in the injuries that tomato plants develop when exposed to continuous light as the light spectral distribution influences the injury severity. Up to now, however, only indirect clues suggested that phytochromes (PHY), red/far-red photoreceptors, are involved in the continuous-light-induced injuries in tomato. In this study, therefore, we exposed mutant and transgenic tomato plants lacking or over-expressing phytochromes to continuous light, with and without far-red light enrichment. The results show that PHYA over-expression confers complete tolerance to continuous light regardless the light spectrum. Under continuous light with low far-red content, PHYB1 and PHYB2 diminished and enhanced the injury, respectively, yet the effects were small. These results confirm that phytochrome signaling networks are involved in the induction of injury under continuous light. HIGHLIGHTS: - PHYA over-expression confers tolerance to continuous light regardless the light spectrum.- In the absence of far-red light, PHYB1 slightly diminishes the continuous light-induced injury.- Continuous light down-regulates photosynthesis genes in sensitive tomato lines.

11.
Curr Opin Plant Biol ; 8(5): 462-8, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16040269

RESUMO

Competition for light determines the success of individual plants in dense vegetation. Much depends on the capacity of plants to detect neighbours quickly and on their ability to respond to these signals. Recent findings indicate that although red:far-red ratios, and thus phytochromes, are of major importance in shade-avoidance responses, they do not act alone. Differences in light intensity also provoke shade-avoidance phenotypes, with blue light playing an important role in dense stands. Moreover, links between shade-avoidance signalling and auxins, gibberellins and ethylene have emerged. Additional breakthroughs are based on transcriptome studies that have unveiled new components in the response to shading. Amongst these, the phytochrome interacting factor 3-like proteins PIL1 and PIL2 underline the importance of circadian gating in shade avoidance.


Assuntos
Ecossistema , Luz , Fitocromo/fisiologia , Fenômenos Fisiológicos Vegetais , Transdução de Sinais/fisiologia , Adaptação Fisiológica , Ritmo Circadiano , Reguladores de Crescimento de Plantas/fisiologia
12.
Funct Plant Biol ; 44(6): 597-611, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32480591

RESUMO

Unlike other species, when tomato plants (Solanum lycopersicum L.) are deprived of at least 8h of darkness per day, they develop a potentially lethal injury. In an effort to understand why continuous light (CL) is injurious to tomato, we tested five factors, which potentially could be responsible for triggering the injury in CL-grown tomato: (i) differences in the light spectral distribution between sunlight and artificial light, (ii) continuous light signalling, (iii) continuous supply of light for photosynthesis, (iv) continuous photo-oxidative pressure and (v) circadian asynchrony - a mismatch between the internal circadian clock frequency and the external light/dark cycles. Our results strongly suggest that continuous-light-induced injury does not result from the unnatural spectral distribution of artificial light nor from the continuity of light per se. Instead, circadian asynchrony seems to be the main factor inducing the CL-induced injury, but the mechanism is not by the earlier hypothesised circadian pattern in sensitivity for photoinhibition. Here, however, we show for the first time diurnal fluctuations in sensitivity to photoinhibition during normal photoperiods. Similarly, we also report for the first time diurnal and circadian rhythms in the maximum quantum efficiency of PSII (Fv/Fm) and the parameter F0.

13.
BMC Bioinformatics ; 7: 137, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16539732

RESUMO

BACKGROUND: Short oligonucleotide arrays for transcript profiling have been available for several years. Generally, raw data from these arrays are analysed with the aid of the Microarray Analysis Suite or GeneChip Operating Software (MAS or GCOS) from Affymetrix. Recently, more methods to analyse the raw data have become available. Ideally all these methods should come up with more or less the same results. We set out to evaluate the different methods and include work on our own data set, in order to test which method gives the most reliable results. RESULTS: Calculating gene expression with 6 different algorithms (MAS5, dChip PMMM, dChip PM, RMA, GC-RMA and PDNN) using the same (Arabidopsis) data, results in different calculated gene expression levels. Consequently, depending on the method used, different genes will be identified as differentially regulated. Surprisingly, there was only 27 to 36% overlap between the different methods. Furthermore, 47.5% of the genes/probe sets showed good correlation between the mismatch and perfect match intensities. CONCLUSION: After comparing six algorithms, RMA gave the most reproducible results and showed the highest correlation coefficients with Real Time RT-PCR data on genes identified as differentially expressed by all methods. However, we were not able to verify, by Real Time RT-PCR, the microarray results for most genes that were solely calculated by RMA. Furthermore, we conclude that subtraction of the mismatch intensity from the perfect match intensity results most likely in a significant underestimation for at least 47.5% of the expression values. Not one algorithm produced significant expression values for genes present in quantities below 1 pmol. If the only purpose of the microarray experiment is to find new candidate genes, and too many genes are found, then mutual exclusion of the genes predicted by contrasting methods can be used to narrow down the list of new candidate genes by 64 to 73%.


Assuntos
Algoritmos , Proteínas de Arabidopsis/metabolismo , Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Software , Proteínas de Arabidopsis/genética , Tomada de Decisões , Perfilação da Expressão Gênica/normas , Análise de Sequência com Séries de Oligonucleotídeos/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Validação de Programas de Computador
14.
Nat Commun ; 5: 4549, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25093373

RESUMO

An important constraint for plant biomass production is the natural day length. Artificial light allows for longer photoperiods, but tomato plants develop a detrimental leaf injury when grown under continuous light--a still poorly understood phenomenon discovered in the 1920s. Here, we report a dominant locus on chromosome 7 of wild tomato species that confers continuous light tolerance. Genetic evidence, RNAseq data, silencing experiments and sequence analysis all point to the type III light harvesting chlorophyll a/b binding protein 13 (CAB-13) gene as a major factor responsible for the tolerance. In Arabidopsis thaliana, this protein is thought to have a regulatory role balancing light harvesting by photosystems I and II. Introgressing the tolerance into modern tomato hybrid lines, results in up to 20% yield increase, showing that limitations for crop productivity, caused by the adaptation of plants to the terrestrial 24-h day/night cycle, can be overcome.


Assuntos
Regulação da Expressão Gênica de Plantas , Luz , Solanum lycopersicum/genética , Solanum lycopersicum/efeitos da radiação , Arabidopsis/genética , Sequência de Bases , Carboidratos/química , Clorofila/genética , Clorofila/metabolismo , Cromossomos/ultraestrutura , Cruzamentos Genéticos , Deleção de Genes , Inativação Gênica , Genótipo , Homozigoto , Dados de Sequência Molecular , Fenótipo , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Plantas/genética , Análise de Sequência de RNA
15.
Trends Plant Sci ; 16(6): 310-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21396878

RESUMO

Continuous light is an essential tool for understanding the plant circadian clock. Additionally, continuous light might increase greenhouse food production. However, using continuous light in research and practice has its challenges. For instance, most of the circadian clock-oriented experiments were performed under continuous light; consequently, interactions between the circadian clock and the light signaling pathway were overlooked. Furthermore, in some plant species continuous light induces severe injury, which is only poorly understood so far. In this review paper, we aim to combine the current knowledge with a modern conceptual framework. Modern genomic tools and rediscovered continuous light-tolerant tomato species (Solanum spp.) could boost the understanding of the physiology of plants under continuous light.


Assuntos
Relógios Circadianos , Luz , Folhas de Planta/efeitos da radiação , Plantas/efeitos da radiação , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Ritmo Circadiano , Etilenos/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efeitos da radiação , Estresse Oxidativo , Fotoperíodo , Fotossíntese , Folhas de Planta/metabolismo , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/efeitos da radiação , Transdução de Sinais
16.
PLoS One ; 5(12): e14255, 2010 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-21170386

RESUMO

Plants defend themselves against infection by biotic attackers by producing distinct phytohormones. Especially jasmonic acid (JA) and salicylic acid (SA) are well known defense-inducing hormones. Here, the effects of MeJA and SA on the Arabidopsis thaliana kinome were monitored using PepChip arrays containing kinase substrate peptides to analyze posttranslational interactions in MeJA and SA signaling pathways and to test if kinome profiling can provide leads to predict posttranslational events in plant signaling. MeJA and SA mediate differential phosphorylation of substrates for many kinase families. Also some plant specific substrates were differentially phosphorylated, including peptides derived from Phytochrome A, and Photosystem II D protein. This indicates that MeJA and SA mediate cross-talk between defense signaling and light responses. We tested the predicted effects of MeJA and SA using light-mediated upward leaf movement (differential petiole growth also called hyponastic growth). We found that MeJA, infestation by the JA-inducing insect herbivore Pieris rapae, and SA suppressed low light-induced hyponastic growth. MeJA and SA acted in a synergistic fashion via two (partially) divergent signaling routes. This work demonstrates that kinome profiling using PepChip arrays can be a valuable complementary ∼omics tool to give directions towards predicting behavior of organisms after a given stimulus and can be used to obtain leads for physiological relevant phenomena in planta.


Assuntos
Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Luz , Análise de Sequência com Séries de Oligonucleotídeos , Peptídeos/química , Fosforilação , Fotossíntese , Complexo de Proteína do Fotossistema II/química , Fitocromo A/química , Folhas de Planta/metabolismo , Fenômenos Fisiológicos Vegetais , Análise Serial de Proteínas , Transdução de Sinais
17.
Plant Signal Behav ; 5(3): 284-6, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20037477

RESUMO

Plants can respond quickly and profoundly to changes in their environment. Several species, including Arabidopsis thaliana, are capable of differential petiole growth driven upward leaf movement (hyponastic growth) to escape from detrimental environmental conditions. Recently, we demonstrated that the leucine-rich repeat receptor-like Ser/Thr kinase gene ERECTA, explains a major effect Quantitative Trait Locus (QTL) for ethylene-induced hyponastic growth in Arabidopsis. Here, we demonstrate that ERECTA controls the hyponastic growth response to low light intensity treatment in a genetic background dependent manner. Moreover, we show that ERECTA affects low light-induced hyponastic growth independent of Phytochrome B and Cryptochrome 2 signaling, despite that these photoreceptors are positive regulators of low light-induced hyponastic growth.

18.
Plant Signal Behav ; 4(9): 899-901, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19847122

RESUMO

Using time-lapse photography, we studied the response kinetics of low light intensity-induced upward leaf-movement, called hyponastic growth, in Arabidopsis thaliana. This response is one of the traits of shade avoidance and directs plant organs to more favorable light conditions. Based on mutant- and pharmacological data we demonstrated that among other factors, functional auxin perception and polar auxin transport (PAT) are required for the amplitude of hyponastic growth and for maintenance of the high leaf angle, upon low light treatment. Here, we present additional data suggesting that auxin and PAT antagonize the hyponastic growth response induced by ethylene treatment. We conclude that ethylene- and low light-induced hyponastic growth occurs at least partly via separate signaling routes, despite their strong similarities in response kinetics.

19.
Plant Physiol ; 149(4): 1797-809, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19176718

RESUMO

The plant hormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) play crucial roles in the signaling network that regulates induced defense responses against biotic stresses. Antagonism between SA and JA operates as a mechanism to fine-tune defenses that are activated in response to multiple attackers. In Arabidopsis (Arabidopsis thaliana), NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) was demonstrated to be required for SA-mediated suppression of JA-dependent defenses. Because ET is known to enhance SA/NPR1-dependent defense responses, we investigated the role of ET in the SA-JA signal interaction. Pharmacological experiments with gaseous ET and the ET precursor 1-aminocyclopropane-1-carboxylic acid showed that ET potentiated SA/NPR1-dependent PATHOGENESIS-RELATED1 transcription, while it rendered the antagonistic effect of SA on methyl jasmonate-induced PDF1.2 and VSP2 expression NPR1 independent. This overriding effect of ET on NPR1 function in SA-JA cross talk was absent in the npr1-1/ein2-1 double mutant, demonstrating that it is mediated via ET signaling. Abiotic and biotic induction of the ET response similarly abolished the NPR1 dependency of the SA-JA signal interaction. Furthermore, JA-dependent resistance against biotic attackers was antagonized by SA in an NPR1-dependent fashion only when the plant-attacker combination did not result in the production of high levels of endogenous ET. Hence, the interaction between ET and NPR1 plays an important modulating role in the fine tuning of the defense signaling network that is activated upon pathogen and insect attack. Our results suggest a model in which ET modulates the NPR1 dependency of SA-JA antagonism, possibly to compensate for enhanced allocation of NPR1 to function in SA-dependent activation of PR genes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Etilenos/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais , Acetatos/farmacologia , Aminoácidos Cíclicos/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Modelos Biológicos , Oxilipinas/farmacologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Plant Physiol ; 143(2): 1013-23, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17158582

RESUMO

Ethylene induces enhanced differential growth in petioles of Arabidopsis (Arabidopsis thaliana), resulting in an upward movement of the leaf blades (hyponastic growth). The amplitude of this effect differs between accessions, with Columbia-0 (Col-0) showing a large response, while in Landsberg erecta (Ler), hyponastic growth is minimal. Abscisic acid (ABA) was found to act as an inhibitory factor of this response in both accessions, but the relationship between ethylene and ABA differed between the two; the ability of ABA to inhibit ethylene-induced hyponasty was significantly more pronounced in Col-0. Mutations in ABI1 or ABI3 induced a strong ethylene-regulated hyponastic growth in the less responsive accession Ler, while the response was abolished in the ABA-hypersensitive era1 in Col-0. Modifications in ABA levels altered petiole angles in the absence of applied ethylene, indicating that ABA influences petiole angles also independently from ethylene. A model is proposed whereby the negative effect of ABA on hyponastic growth is overcome by ethylene in Col-0 but not in Ler. However, when ABA signaling is artificially released in Ler, this regulatory mechanism is bypassed, resulting in a strong hyponastic response in this accession.


Assuntos
Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Etilenos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/fisiologia , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA