Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(21): e2201481119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35588455

RESUMO

Higher-order thalamic nuclei contribute to sensory processing via projections to primary and higher cerebral cortical areas, but it is unknown which of their cortical and subcortical inputs contribute to their distinct output pathways. We used subpopulation specific viral strategies in mice to anatomically and physiologically dissect pathways of the higher-order thalamic nuclei of the somatosensory and visual systems (the posterior medial nucleus and pulvinar). Employing a complementary optogenetics and electrical stimulation strategy, we show that synapses in cortex from higher-order thalamus have functionally divergent properties in primary vs. higher cortical areas. Higher-order thalamic projections onto excitatory targets in S1 and V1 were weakly modulatory, while projections to S2 and higher visual areas were strong drivers of postsynaptic targets. Then, using transsynaptic tracing verified by optogenetics to map inputs to higher-order thalamus, we show that posterior medial nucleus cells projecting to S1 are driven by neurons in layer 5 of S1, S2, and M1 and that pulvinar cells projecting to V1 are driven by neurons in layer 5 of V1 and higher visual areas. Therefore, in both systems, layer 5 of primary and higher cortical areas drives transthalamic feedback modulation of primary sensory cortex through higher-order thalamus. These results highlight conserved organization that may be shared by other thalamocortical circuitry. They also support the hypothesis that direct corticocortical projections in the brain are paralleled by transthalamic pathways, even in the feedback direction, with feedforward transthalamic pathways acting as drivers, while feedback through thalamus is modulatory.


Assuntos
Córtex Somatossensorial , Núcleos Talâmicos , Animais , Camundongos , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico , Córtex Somatossensorial/anatomia & histologia , Córtex Somatossensorial/fisiologia , Sinapses/fisiologia , Núcleos Talâmicos/anatomia & histologia , Núcleos Talâmicos/fisiologia
2.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34282018

RESUMO

Higher order thalamic neurons receive driving inputs from cortical layer 5 and project back to the cortex, reflecting a transthalamic route for corticocortical communication. To determine whether or not individual neurons integrate signals from different cortical populations, we combined electron microscopy "connectomics" in mice with genetic labeling to disambiguate layer 5 synapses from somatosensory and motor cortices to the higher order thalamic posterior medial nucleus. A significant convergence of these inputs was found on 19 of 33 reconstructed thalamic cells, and as a population, the layer 5 synapses were larger and located more proximally on dendrites than were unlabeled synapses. Thus, many or most of these thalamic neurons do not simply relay afferent information but instead integrate signals as disparate in this case as those emanating from sensory and motor cortices. These findings add further depth and complexity to the role of the higher order thalamus in overall cortical functioning.


Assuntos
Córtex Cerebral/citologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Tálamo/citologia , Animais , Ascorbato Peroxidases/metabolismo , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Transgênicos , Vias Neurais/fisiologia , Pisum sativum , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol/genética , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Transdução de Sinais , Sinapses/fisiologia
3.
Eur J Neurosci ; 53(3): 750-762, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33368722

RESUMO

Many studies exist of thalamocortical synapses in primary sensory cortex, but much less in known about higher-order thalamocortical projections to higher-order cortical areas. We begin to address this gap using genetic labeling combined with large volume serial electron microscopy (i.e., "connectomics") to study the projection from the thalamic posterior medial nucleus to the secondary somatosensory cortex in a mouse. We injected into this thalamic nucleus a cocktail combining a cre-expressing virus and one expressing cre-dependent ascorbate peroxidase that provides an electron dense cytoplasmic label. This "intersectional" viral approach specifically labeled thalamocortical axons and synapses, free of retrograde labeling, in all layers of cortex. Labeled thalamocortical synapses represented 14% of all synapses in the cortical volume, consistent with previous estimates of first-order thalamocortical inputs. We found that labeled thalamocortical terminals, relative to unlabeled ones: were larger, were more likely to contain a mitochondrion, more frequently targeted spiny dendrites and avoided aspiny dendrites, and often innervated larger spines with spine apparatuses, among other differences. Furthermore, labeled terminals were more prevalent in layers 2/3 and synaptic differences between labeled and unlabeled terminals were greatest in layers 2/3. The laminar differences reported here contrast with reports of first-order thalamocortical connections in primary sensory cortices where, for example, labeled terminals were larger in layer 4 than layers 2/3 (Viaene et al., 2011a). These data offer the first glimpse of higher-order thalamocortical synaptic ultrastructure and point to the need for more analyses, as such connectivity likely represents a majority of thalamocortical circuitry.


Assuntos
Conectoma , Animais , Axônios , Camundongos , Sinapses , Núcleos Talâmicos , Tálamo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA