Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37511129

RESUMO

Psychological stress is a significant contributor to various chronic diseases and affects multiple physiological processes including erythropoiesis. This study aimed to examine the tissue-specific contributions of macrophages and extracellular ATP, as a signal of disturbed tissue homeostasis, to erythropoiesis under conditions of repeated psychological stress. Adult male BALB/c mice were subjected to 2 h daily restraint stress for seven consecutive days. Clodronate-liposomes were used to deplete resident macrophages from the bone marrow and spleen two days prior to the first restraint procedure, as well as newly recruited macrophages, every third day for the duration of the experiment. Repeated stress induced a considerable increase in the number of erythroid progenitor cells as well as in the percentage of CD71+/Ter119+ and CD71-/Ter119+ cells in the bone marrow and spleen. Macrophage depletion completely abolished the stimulative effect of repeated stress on immature erythroid cells, and prevented stress-induced increases in ATP levels, P2X7 receptor (P2X7R) expression, and ectonucleotidase CD39 activity and expression in the bone marrow and spleen. The obtained results demonstrate the stimulative effects of repeated stress on erythroid cells, extracellular ATP levels, P2X7R expression, CD39 activity and expression within the bone marrow and spleen, as well as the essential role of macrophages in stress-induced changes.


Assuntos
Eritropoese , Macrófagos , Camundongos , Animais , Masculino , Macrófagos/metabolismo , Baço/metabolismo , Camundongos Endogâmicos BALB C , Estresse Psicológico , Trifosfato de Adenosina/metabolismo
2.
Front Physiol ; 14: 1119095, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020461

RESUMO

Stress is an integral part of life. While acute responses to stress are generally regarded as beneficial in dealing with immediate threats, chronic exposure to threatening stimuli exerts deleterious effects and can be either a contributing or an aggravating factor for many chronic diseases including cancer. Chronic psychological stress has been identified as a significant factor contributing to the development and progression of cancer, but the mechanisms that link chronic stress to cancer remain incompletely understood. Psychological stressors initiate multiple physiological responses that result in the activation of the hypothalamic-pituitary-adrenal (HPA) axis, sympathetic nervous system, and the subsequent changes in immune function. Chronic stress exposure disrupts the homeostatic communication between the neuroendocrine and immune systems, shifting immune signaling toward a proinflammatory state. Stress-induced chronic low-grade inflammation and a decline in immune surveillance are both implicated in cancer development and progression. Conversely, tumor-induced inflammatory cytokines, apart from driving a tumor-supportive inflammatory microenvironment, can also exert their biological actions distantly via circulation and therefore adversely affect the stress response. In this minireview, we summarize the current findings on the relationship between stress and cancer, focusing on the role of inflammation in stress-induced neuroendocrine-immune crosstalk. We also discuss the underlying mechanisms and their potential for cancer treatment and prevention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA