Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 36(7-8): 451-467, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35450883

RESUMO

Genome organization plays a pivotal role in transcription, but how transcription factors (TFs) rewire the structure of the genome to initiate and maintain the programs that lead to oncogenic transformation remains poorly understood. Acute promyelocytic leukemia (APL) is a fatal subtype of leukemia driven by a chromosomal translocation between the promyelocytic leukemia (PML) and retinoic acid receptor α (RARα) genes. We used primary hematopoietic stem and progenitor cells (HSPCs) and leukemic blasts that express the fusion protein PML-RARα as a paradigm to temporally dissect the dynamic changes in the epigenome, transcriptome, and genome architecture induced during oncogenic transformation. We found that PML-RARα initiates a continuum of topologic alterations, including switches from A to B compartments, transcriptional repression, loss of active histone marks, and gain of repressive histone marks. Our multiomics-integrated analysis identifies Klf4 as an early down-regulated gene in PML-RARα-driven leukemogenesis. Furthermore, we characterized the dynamic alterations in the Klf4 cis-regulatory network during APL progression and demonstrated that ectopic Klf4 overexpression can suppress self-renewal and reverse the differentiation block induced by PML-RARα. Our study provides a comprehensive in vivo temporal dissection of the epigenomic and topological reprogramming induced by an oncogenic TF and illustrates how topological architecture can be used to identify new drivers of malignant transformation.


Assuntos
Leucemia Promielocítica Aguda , Diferenciação Celular/genética , Transformação Celular Neoplásica/genética , Humanos , Fator 4 Semelhante a Kruppel , Leucemia Promielocítica Aguda/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fatores de Transcrição/metabolismo , Tretinoína/farmacologia
3.
Mol Cell ; 67(2): 266-281.e4, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28648781

RESUMO

Mec1ATR mediates the DNA damage response (DDR), integrating chromosomal signals and mechanical stimuli. We show that the PP2A phosphatases, ceramide-activated enzymes, couple cell metabolism with the DDR. Using genomic screens, metabolic analysis, and genetic and pharmacological studies, we found that PP2A attenuates the DDR and that three metabolic circuits influence the DDR by modulating PP2A activity. Irc21, a putative cytochrome b5 reductase that promotes the condensation reaction generating dihydroceramides (DHCs), and Ppm1, a PP2A methyltransferase, counteract the DDR by activating PP2A; conversely, the nutrient-sensing TORC1-Tap42 axis sustains DDR activation by inhibiting PP2A. Loss-of-function mutations in IRC21, PPM1, and PP2A and hyperactive tap42 alleles rescue mec1 mutants. Ceramides synergize with rapamycin, a TORC1 inhibitor, in counteracting the DDR. Hence, PP2A integrates nutrient-sensing and metabolic pathways to attenuate the Mec1ATR response. Our observations imply that metabolic changes affect genome integrity and may help with exploiting therapeutic options and repositioning known drugs.


Assuntos
Dano ao DNA , Reparo do DNA , DNA Fúngico/metabolismo , Metabolismo Energético , Genoma Fúngico , Instabilidade Genômica , Proteína Fosfatase 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ceramidas/metabolismo , Ceramidas/farmacologia , Citocromo-B(5) Redutase/genética , Citocromo-B(5) Redutase/metabolismo , Reparo do DNA/efeitos dos fármacos , DNA Fúngico/genética , Ativação Enzimática , Regulação Fúngica da Expressão Gênica , Genoma Fúngico/efeitos dos fármacos , Instabilidade Genômica/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metabolômica , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Metiltransferases/genética , Proteínas Metiltransferases/metabolismo , Proteína Fosfatase 2/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Sirolimo/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Cell ; 138(6): 1083-95, 2009 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-19766563

RESUMO

Stem-like cells may be integral to the development and maintenance of human cancers. Direct proof is still lacking, mainly because of our poor understanding of the biological differences between normal and cancer stem cells (SCs). Using the ErbB2 transgenic model of breast cancer, we found that self-renewing divisions of cancer SCs are more frequent than their normal counterparts, unlimited and symmetric, thus contributing to increasing numbers of SCs in tumoral tissues. SCs with targeted mutation of the tumor suppressor p53 possess the same self-renewal properties as cancer SCs, and their number increases progressively in the p53 null premalignant mammary gland. Pharmacological reactivation of p53 correlates with restoration of asymmetric divisions in cancer SCs and tumor growth reduction, without significant effects on additional cancer cells. These data demonstrate that p53 regulates polarity of cell division in mammary SCs and suggest that loss of p53 favors symmetric divisions of cancer SCs, contributing to tumor growth.


Assuntos
Divisão Celular , Neoplasias Mamárias Animais/metabolismo , Células-Tronco Neoplásicas/citologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Polaridade Celular , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Células-Tronco Neoplásicas/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo
5.
Blood ; 137(22): 3093-3104, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33598693

RESUMO

In the international randomized phase 3 RATIFY (Randomized AML Trial In FLT3 in patients less than 60 Years old) trial, the multikinase inhibitor midostaurin significantly improved overall and event-free survival in patients 18 to 59 years of age with FLT3-mutated acute myeloid leukemia (AML). However, only 59% of patients in the midostaurin arm achieved protocol-specified complete remission (CR), and almost half of patients achieving CR relapsed. To explore underlying mechanisms of resistance, we studied patterns of clonal evolution in patients with FLT3-internal tandem duplications (ITD)-positive AML who were entered in the RATIFY or German-Austrian Acute Myeloid Leukemia Study Group 16-10 trial and received treatment with midostaurin. To this end, paired samples from 54 patients obtained at time of diagnosis and at time of either relapsed or refractory disease were analyzed using conventional Genescan-based testing for FLT3-ITD and whole exome sequencing. At the time of disease resistance or progression, almost half of the patients (46%) became FLT3-ITD negative but acquired mutations in signaling pathways (eg, MAPK), thereby providing a new proliferative advantage. In cases with FLT3-ITD persistence, the selection of resistant ITD clones was found in 11% as potential drivers of disease. In 32% of cases, no FLT3-ITD mutational change was observed, suggesting either resistance mechanisms bypassing FLT3 inhibition or loss of midostaurin inhibitory activity because of inadequate drug levels. In summary, our study provides novel insights into the clonal evolution and resistance mechanisms of FLT3-ITD-mutated AML under treatment with midostaurin in combination with intensive chemotherapy.


Assuntos
Evolução Clonal/efeitos dos fármacos , Leucemia Mieloide Aguda , Mutação , Estaurosporina/análogos & derivados , Tirosina Quinase 3 Semelhante a fms , Adolescente , Adulto , Idoso , Evolução Clonal/genética , Feminino , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Masculino , Pessoa de Meia-Idade , Estaurosporina/administração & dosagem , Sequências de Repetição em Tandem , Sequenciamento do Exoma , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
6.
EMBO Rep ; 22(3): e50852, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33586907

RESUMO

Transition from proliferative-to-invasive phenotypes promotes metastasis and therapy resistance in melanoma. Reversion of the invasive phenotype, however, is challenged by the poor understanding of mechanisms underlying its maintenance. Here, we report that the lncRNA TINCR is down-regulated in metastatic melanoma and its silencing increases the expression levels of invasive markers, in vitro migration, in vivo tumor growth, and resistance to BRAF and MEK inhibitors. The critical mediator is ATF4, a central player of the integrated stress response (ISR), which is activated in TINCR-depleted cells in the absence of starvation and eIF2α phosphorylation. TINCR depletion increases global protein synthesis and induces translational reprogramming, leading to increased translation of mRNAs encoding ATF4 and other ISR proteins. Strikingly, re-expression of TINCR in metastatic melanoma suppresses the invasive phenotype, reduces numbers of tumor-initiating cells and metastasis formation, and increases drug sensitivity. Mechanistically, TINCR interacts with mRNAs associated with the invasive phenotype, including ATF4, preventing their binding to ribosomes. Thus, TINCR is a suppressor of the melanoma invasive phenotype, which functions in nutrient-rich conditions by repressing translation of selected ISR RNAs.


Assuntos
Melanoma , Preparações Farmacêuticas , RNA Longo não Codificante , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Linhagem Celular Tumoral , Humanos , Melanoma/genética , Fosforilação , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo
7.
Mol Cancer ; 21(1): 166, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986270

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is a heterogeneous and aggressive blood cancer that results from diverse genetic aberrations in the hematopoietic stem or progenitor cells (HSPCs) leading to the expansion of blasts in the hematopoietic system. The heterogeneity and evolution of cancer blasts can render therapeutic interventions ineffective in a yet poorly understood patient-specific manner. In this study, we investigated the clonal heterogeneity of diagnosis (Dx) and relapse (Re) pairs at genetic and transcriptional levels, and unveiled the underlying pathways and genes contributing to recurrence. METHODS: Whole-exome sequencing was used to detect somatic mutations and large copy number variations (CNVs). Single cell RNA-seq was performed to investigate the clonal heterogeneity between Dx-Re pairs and amongst patients. RESULTS: scRNA-seq analysis revealed extensive expression differences between patients and Dx-Re pairs, even for those with the same -presumed- initiating events. Transcriptional differences between and within patients are associated with clonal composition and evolution, with the most striking differences in patients that gained large-scale copy number variations at relapse. These differences appear to have significant molecular implications, exemplified by a DNMT3A/FLT3-ITD patient where the leukemia switched from an AP-1 regulated clone at Dx to a mTOR signaling driven clone at Re. The two distinct AML1-ETO pairs share genes related to hematopoietic stem cell maintenance and cell migration suggesting that the Re leukemic stem cell-like (LSC-like) cells evolved from the Dx cells. CONCLUSIONS: In summary, the single cell RNA data underpinned the tumor heterogeneity not only amongst patient blasts with similar initiating mutations but also between each Dx-Re pair. Our results suggest alternatively and currently unappreciated and unexplored mechanisms leading to therapeutic resistance and AML recurrence.


Assuntos
Variações do Número de Cópias de DNA , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Mutação , Recidiva , Análise de Célula Única , Transcriptoma , Tirosina Quinase 3 Semelhante a fms/genética
8.
Bioorg Med Chem ; 56: 116596, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033885

RESUMO

FMS-like tyrosine kinase 3 (FLT3) enzyme overexpression and mutations are the most common molecular abnormalities associated with acute myeloid leukemia (AML). In addition, recent studies investigated the role of tropomyosin receptor kinase A (TrKA) enzyme fusions in promoting AML growth and survival. Based on these premises, targeting both kinases using dual inhibitors would constitute a promising therapeutic approach to target resistant AML. Guided by ligand-based design and structure simplification of the FLT3 inhibitor, quizartinib, we developed a benzimidazole-based small molecule, 4ACP, that exhibited nanomolar activity against wild-type FLT3, FLT3-Internal tandem duplications (FLT3-ITD), and FLT3-D835Y (FLT3-TKD) mutation (IC50 = 43.8, 97.2, and 92.5 nM respectively). Additionally, 4ACP demonstrated potent activity against colon cancer KM12 cell line (IC50 = 358 nM) and subsequent mechanistic deconvolution identified TrKA enzyme as a second plausible target (IC50 = 23.6 nM) for our compound. 4ACP manifested preferential antiproliferative activity against FLT3-ITD positive AML cell lines (MV4-11 IC50 = 38.8 ± 10.7 nM and MOLM-13 IC50 = 54.9 ± 4.1 nM), while lacking activity against FLT3-ITD negative AML cell lines. Western blot analysis confirmed 4ACP ability to downregulate ERK1/2 and mTOR signaling downstream of FLT3-ITD in AML cells. Furthermore, 4ACP prompted apoptotic and necrotic cell death and G0/G1 cell cycle arrest as indicated by cell cycle analysis. 4ACP did not show cytotoxic effects on normal BNL and H9c2 cells and demonstrated decreased activity against c-Kit enzyme, hence, indicating lower probability of synthetic lethal toxicity and a relatively safer profile. In light of these data, 4ACP represents a novel FLT3/TrKA dual kinase inhibitor for targeted therapy of AML.


Assuntos
Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Receptor trkA/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Benzimidazóis/síntese química , Benzimidazóis/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Receptor trkA/metabolismo , Relação Estrutura-Atividade , Tirosina Quinase 3 Semelhante a fms/metabolismo
9.
Genes Dev ; 28(8): 841-57, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24682306

RESUMO

Fibro-adipogenic progenitors (FAPs) are important components of the skeletal muscle regenerative environment. Whether FAPs support muscle regeneration or promote fibro-adipogenic degeneration is emerging as a key determinant in the pathogenesis of muscular diseases, including Duchenne muscular dystrophy (DMD). However, the molecular mechanism that controls FAP lineage commitment and activity is currently unknown. We show here that an HDAC-myomiR-BAF60 variant network regulates the fate of FAPs in dystrophic muscles of mdx mice. Combinatorial analysis of gene expression microarray, genome-wide chromatin remodeling by nuclease accessibility (NA) combined with next-generation sequencing (NA-seq), small RNA sequencing (RNA-seq), and microRNA (miR) high-throughput screening (HTS) against SWI/SNF BAF60 variants revealed that HDAC inhibitors (HDACis) derepress a "latent" myogenic program in FAPs from dystrophic muscles at early stages of disease. Specifically, HDAC inhibition induces two core components of the myogenic transcriptional machinery, MYOD and BAF60C, and up-regulates the myogenic miRs (myomiRs) (miR-1.2, miR-133, and miR-206), which target the alternative BAF60 variants BAF60A and BAF60B, ultimately directing promyogenic differentiation while suppressing the fibro-adipogenic phenotype. In contrast, FAPs from late stage dystrophic muscles are resistant to HDACi-induced chromatin remodeling at myogenic loci and fail to activate the promyogenic phenotype. These results reveal a previously unappreciated disease stage-specific bipotency of mesenchimal cells within the regenerative environment of dystrophic muscles. Resolution of such bipotency by epigenetic intervention with HDACis provides a molecular rationale for the in situ reprogramming of target cells to promote therapeutic regeneration of dystrophic muscles.


Assuntos
Histona Desacetilases/metabolismo , MicroRNAs/metabolismo , Músculo Esquelético/fisiologia , Distrofias Musculares/genética , Distrofias Musculares/fisiopatologia , Células-Tronco/metabolismo , Animais , Reprogramação Celular/genética , Cromatina/genética , Montagem e Desmontagem da Cromatina/fisiologia , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Ácidos Hidroxâmicos/farmacologia , Camundongos , Camundongos Endogâmicos mdx , Proteínas Musculares/genética , Proteínas Musculares/metabolismo
10.
Bioorg Chem ; 117: 105451, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34736137

RESUMO

Aurora B is a pivotal cell cycle regulator where errors in its function results in polyploidy, genetic instability, and tumorigenesis. It is overexpressed in many cancers, consequently, targeting Aurora B with small molecule inhibitors constitutes a promising approach for anticancer therapy. Guided by structure-based design and molecular hybridization approach we developed a series of fifteen indolin-2-one derivatives based on a previously reported indolin-2-one-based multikinase inhibitor (1). Seven derivatives, 5g, 6a, 6c-e, 7, and 8a showed preferential antiproliferative activity in NCI-60 cell line screening and out of these, carbamate 6e and cyclopropylurea 8a derivatives showed optimum activity against Aurora B (IC50 = 16.2 and 10.5 nM respectively) and MDA-MB-468 cells (IC50 = 32.6 ± 9.9 and 29.1 ± 7.3 nM respectively). Furthermore, 6e and 8a impaired the clonogenic potential of MDA-MB-468 cells. Mechanistic investigations indicated that 6e and 8a induced G2/M cell cycle arrest, apoptosis, and necrosis of MDA-MB-468 cells and western blot analysis of 8a effect on MDA-MB-468 cells revealed 8a's ability to reduce Aurora B and its downstream target, Histone H3 phosphorylation. 6e and 8a displayed better safety profiles than multikinase inhibitors such as sunitinib, showing no cytotoxic effects on normal rat cardiomyoblasts and murine hepatocytes. Finally, 8a demonstrated a more selective profile than 1 when screened against ten related kinases. Based on these findings, 8a represents a promising candidate for further development to target breast cancer via Aurora B selective inhibition.


Assuntos
Antineoplásicos/farmacologia , Aurora Quinase B/antagonistas & inibidores , Neoplasias da Mama/tratamento farmacológico , Indóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Aurora Quinase B/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Indóis/síntese química , Indóis/química , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
12.
Haematologica ; 105(8): 2105-2117, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31537694

RESUMO

Lysine specific demethylase-1 (LSD1) has been shown to be critical in acute myeloid leukemia (AML) pathogenesis and this has led to the development of LSD1 inhibitors (LSD1i) which are currently tested in clinical trials. Nonetheless, preclinical studies reported that AML cells frequently exhibit intrinsic resistance to LSD1 inhibition, and the molecular basis for this phenomenon is largely unknown. We explored the potential involvement of mammalian target of rapamycin (mTOR) in mediating the resistance of leukemic cells to LSD1i. Strikingly, unlike sensitive leukemias, mTOR complex 1 (mTORC1) signaling was robustly triggered in resistant leukemias following LSD1 inhibition. Transcriptomic, chromatin immunoprecipitation and functional studies revealed that insulin receptor substrate 1(IRS1)/extracellular-signal regulated kinases (ERK1/2) signaling critically controls LSD1i induced mTORC1 activation. Notably, inhibiting mTOR unlocked the resistance of AML cell lines and primary patient-derived blasts to LSD1i both in vitro and in vivo In conclusion, mTOR activation might act as a novel pro-survival mechanism of intrinsic as well as acquired resistance to LSD1i, and combination regimens co-targeting LSD1/mTOR could represent a rational approach in AML therapy.


Assuntos
Leucemia Mieloide Aguda , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Transdução de Sinais , Sirolimo
13.
Nucleic Acids Res ; 46(8): 3817-3832, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618087

RESUMO

Histone post-translational modifications (PTMs) generate a complex combinatorial code that regulates gene expression and nuclear functions, and whose deregulation has been documented in different types of cancers. Therefore, the availability of relevant culture models that can be manipulated and that retain the epigenetic features of the tissue of origin is absolutely crucial for studying the epigenetic mechanisms underlying cancer and testing epigenetic drugs. In this study, we took advantage of quantitative mass spectrometry to comprehensively profile histone PTMs in patient tumor tissues, primary cultures and cell lines from three representative tumor models, breast cancer, glioblastoma and ovarian cancer, revealing an extensive and systematic rewiring of histone marks in cell culture conditions, which includes a decrease of H3K27me2/me3, H3K79me1/me2 and H3K9ac/K14ac, and an increase of H3K36me1/me2. While some changes occur in short-term primary cultures, most of them are instead time-dependent and appear only in long-term cultures. Remarkably, such changes mostly revert in cell line- and primary cell-derived in vivo xenograft models. Taken together, these results support the use of xenografts as the most representative models of in vivo epigenetic processes, suggesting caution when using cultured cells, in particular cell lines and long-term primary cultures, for epigenetic investigations.


Assuntos
Código das Histonas , Histonas/metabolismo , Neoplasias/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Xenoenxertos , Código das Histonas/genética , Histonas/genética , Humanos , Camundongos , Camundongos Nus , Modelos Biológicos , Neoplasias/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica , Células Tumorais Cultivadas
14.
Int J Cancer ; 145(7): 1991-2001, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30848481

RESUMO

Sunitinib is one of the most widely used targeted therapeutics for renal cell carcinoma (RCC), but acquired resistance against targeted therapies remains a major clinical challenge. To dissect mechanisms of acquired resistance and unravel reliable predictive biomarkers for sunitinib in RCC, we sequenced the exons of 409 tumor-suppressor genes and oncogenes in paired tumor samples from an RCC patient, obtained at baseline and after development of acquired resistance to sunitinib. From newly arising mutations, we selected, using in silico prediction models, six predicted to be deleterious, located in G6PD, LRP1B, SETD2, TET2, SYNE1, and DCC. Consistently, immunoblotting analysis of lysates derived from sunitinib-desensitized RCC cells and their parental counterparts showed marked differences in the levels and expression pattern of the proteins encoded by these genes. Our further analysis demonstrates essential roles for these proteins in mediating sunitinib cytotoxicity and shows that their loss of function renders tumor cells resistant to sunitinib in vitro and in vivo. Finally, sunitinib resistance induced by continuous exposure or by inhibition of the six proteins was overcome by treatment with cabozantinib or a low-dose combination of lenvatinib and everolimus. Collectively, our results unravel novel markers of acquired resistance to sunitinib and clinically relevant approaches for overcoming this resistance in RCC.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Renais/genética , Resistencia a Medicamentos Antineoplásicos , Neoplasias Renais/genética , Mutação , Animais , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Éxons , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/metabolismo , Camundongos , Transplante de Neoplasias , Análise de Sequência de DNA , Sunitinibe
15.
Mol Cell Proteomics ; 15(3): 866-77, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26463340

RESUMO

Histone post-translational modifications (hPTMs) generate a complex combinatorial code that has been implicated with various pathologies, including cancer. Dissecting such a code in physiological and diseased states may be exploited for epigenetic biomarker discovery, but hPTM analysis in clinical samples has been hindered by technical limitations. Here, we developed a method (PAThology tissue analysis of Histones by Mass Spectrometry - PAT-H-MS) that allows to perform a comprehensive, unbiased and quantitative MS-analysis of hPTM patterns on formalin-fixed paraffin-embedded (FFPE) samples. In pairwise comparisons, histone extracted from formalin-fixed paraffin-embedded tissues showed patterns similar to fresh frozen samples for 24 differentially modified peptides from histone H3. In addition, when coupled with a histone-focused version of the super-SILAC approach, this method allows the accurate quantification of modification changes among breast cancer patient samples. As an initial application of the PAThology tissue analysis of Histones by Mass Spectrometry method, we analyzed breast cancer samples, revealing significant changes in histone H3 methylation patterns among Luminal A-like and Triple Negative disease subtypes. These results pave the way for retrospective epigenetic studies that combine the power of MS-based hPTM analysis with the extensive clinical information associated with formalin-fixed paraffin-embedded archives.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Histonas/metabolismo , Leucemia Promielocítica Aguda/patologia , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem/métodos , Animais , Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Leucemia Promielocítica Aguda/metabolismo , Metilação , Camundongos , Proteômica/métodos , Fixação de Tecidos
16.
Blood ; 126(21): 2392-403, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26447190

RESUMO

Histone deacetylase (HDAC) inhibitors (HDACis) have demonstrated activity in hematological and solid malignancies. Vorinostat, romidepsin, belinostat, and panobinostat are Food and Drug Administration-approved for hematological malignancies and inhibit class II and/or class I HDACs, including HDAC1, 2, 3, and 6. We combined genetic and pharmacological approaches to investigate whether suppression of individual or multiple Hdacs phenocopied broad-acting HDACis in 3 genetically distinct leukemias and lymphomas. Individual Hdacs were depleted in murine acute myeloid leukemias (MLL-AF9;Nras(G12D); PML-RARα acute promyelocytic leukemia [APL] cells) and Eµ-Myc lymphoma in vitro and in vivo. Strikingly, Hdac3-depleted cells were selected against in competitive assays for all 3 tumor types. Decreased proliferation following Hdac3 knockdown was not prevented by BCL-2 overexpression, caspase inhibition, or knockout of Cdkn1a in Eµ-Myc lymphoma, and depletion of Hdac3 in vivo significantly reduced tumor burden. Interestingly, APL cells depleted of Hdac3 demonstrated a more differentiated phenotype. Consistent with these genetic studies, the HDAC3 inhibitor RGFP966 reduced proliferation of Eµ-Myc lymphoma and induced differentiation in APL. Genetic codepletion of Hdac1 with Hdac2 was pro-apoptotic in Eµ-Myc lymphoma in vitro and in vivo and was phenocopied by the HDAC1/2-specific agent RGFP233. This study demonstrates the importance of HDAC3 for the proliferation of leukemia and lymphoma cells, suggesting that HDAC3-selective inhibitors could prove useful for the treatment of hematological malignancies. Moreover, our results demonstrate that codepletion of Hdac1 with Hdac2 mediates a robust pro-apoptotic response. Our integrated genetic and pharmacological approach provides important insights into the individual or combinations of HDACs that could be prioritized for targeting in a range of hematological malignancies.


Assuntos
Histona Desacetilases/metabolismo , Leucemia Promielocítica Aguda/enzimologia , Leucemia Promielocítica Aguda/genética , Linfoma/enzimologia , Linfoma/genética , Animais , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/patologia , Linfoma/tratamento farmacológico , Linfoma/patologia , Camundongos , Células NIH 3T3 , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
17.
Nature ; 471(7336): 74-79, 2011 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-21368826

RESUMO

Protein acetylation is mediated by histone acetyltransferases (HATs) and deacetylases (HDACs), which influence chromatin dynamics, protein turnover and the DNA damage response. ATM and ATR mediate DNA damage checkpoints by sensing double-strand breaks and single-strand-DNA-RFA nucleofilaments, respectively. However, it is unclear how acetylation modulates the DNA damage response. Here we show that HDAC inhibition/ablation specifically counteracts yeast Mec1 (orthologue of human ATR) activation, double-strand-break processing and single-strand-DNA-RFA nucleofilament formation. Moreover, the recombination protein Sae2 (human CtIP) is acetylated and degraded after HDAC inhibition. Two HDACs, Hda1 and Rpd3, and one HAT, Gcn5, have key roles in these processes. We also find that HDAC inhibition triggers Sae2 degradation by promoting autophagy that affects the DNA damage sensitivity of hda1 and rpd3 mutants. Rapamycin, which stimulates autophagy by inhibiting Tor, also causes Sae2 degradation. We propose that Rpd3, Hda1 and Gcn5 control chromosome stability by coordinating the ATR checkpoint and double-strand-break processing with autophagy.


Assuntos
Autofagia , Quebras de DNA de Cadeia Dupla , Histona Desacetilases/metabolismo , Saccharomyces cerevisiae , Acetilação/efeitos dos fármacos , Aminopeptidases/metabolismo , Autofagia/efeitos dos fármacos , Família da Proteína 8 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Instabilidade Cromossômica , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Endodesoxirribonucleases/metabolismo , Endonucleases/química , Endonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Histona Acetiltransferases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Quinases/genética , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ácido Valproico/farmacologia
18.
Br J Cancer ; 114(6): 605-11, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26908329

RESUMO

Histone deacetylases (HDACs) are a key component of the epigenetic machinery regulating gene expression, and behave as oncogenes in several cancer types, spurring the development of HDAC inhibitors (HDACi) as anticancer drugs. This review discusses new results regarding the role of HDACs in cancer and the effect of HDACi on tumour cells, focusing on haematological malignancies, particularly acute myeloid leukaemia. Histone deacetylases may have opposite roles at different stages of tumour progression and in different tumour cell sub-populations (cancer stem cells), highlighting the importance of investigating these aspects for further improving the clinical use of HDACi in treating cancer.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Leucemia/tratamento farmacológico , Leucemia/enzimologia , Animais , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Leucemia/genética
19.
Mol Cell Proteomics ; 13(6): 1495-509, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24696502

RESUMO

Novel drugs are designed against specific molecular targets, but almost unavoidably they bind non-targets, which can cause additional biological effects that may result in increased activity or, more frequently, undesired toxicity. Chemical proteomics is an ideal approach for the systematic identification of drug targets and off-targets, allowing unbiased screening of candidate interactors in their natural context (tissue or cell extracts). E-3810 is a novel multi-kinase inhibitor currently in clinical trials for its anti-angiogenic and anti-tumor activity. In biochemical assays, E-3810 targets primarily vascular endothelial growth factor and fibroblast growth factor receptors. Interestingly, E-3810 appears to inhibit the growth of tumor cells with low to undetectable levels of these proteins in vitro, suggesting that additional relevant targets exist. We applied chemical proteomics to screen for E-3810 targets by immobilizing the drug on a resin and exploiting stable isotope labeling by amino acids in cell culture to design experiments that allowed the detection of novel interactors and the quantification of their dissociation constant (Kd imm) for the immobilized drug. In addition to the known target FGFR2 and PDGFRα, which has been described as a secondary E-3810 target based on in vitro assays, we identified six novel candidate kinase targets (DDR2, YES, LYN, CARDIAK, EPHA2, and CSBP). These kinases were validated in a biochemical assay and-in the case of the cell-surface receptor DDR2, for which activating mutations have been recently discovered in lung cancer-cellular assays. Taken together, the success of our strategy-which integrates large-scale target identification and quality-controlled target affinity measurements using quantitative mass spectrometry-in identifying novel E-3810 targets further supports the use of chemical proteomics to dissect the mechanism of action of novel drugs.


Assuntos
Naftalenos/administração & dosagem , Proteínas de Neoplasias/biossíntese , Inibidores de Proteínas Quinases/administração & dosagem , Proteômica , Quinolinas/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Humanos , Marcação por Isótopo , Espectrometria de Massas , Terapia de Alvo Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Blood ; 121(17): 3459-68, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23440245

RESUMO

Aberrant recruitment of histone deacetylases (HDACs) by the oncogenic fusion protein PML-RAR is involved in the pathogenesis of acute promyelocytic leukemia (APL). PML-RAR, however, is not sufficient to induce disease in mice but requires additional oncogenic lesions during the preleukemic phase. Here, we show that knock-down of Hdac1 and Hdac2 dramatically accelerates leukemogenesis in transgenic preleukemic mice. These events are not restricted to APL because lymphomagenesis driven by deletion of p53 or, to a lesser extent, by c-myc overexpression, was also accelerated by Hdac1 knock-down. In the preleukemic phase of APL, Hdac1 counteracts the activity of PML-RAR in (1) blocking differentiation; (2) impairing genomic stability; and (3) increasing self-renewal in hematopoietic progenitors, as all of these events are affected by the reduction in Hdac1 levels. This led to an expansion of a subpopulation of PML-RAR-expressing cells that is the major source of leukemic stem cells in the full leukemic stage. Remarkably, short-term treatment of preleukemic mice with an HDAC inhibitor accelerated leukemogenesis. In contrast, knock-down of Hdac1 in APL mice led to enhanced survival duration of the leukemic animals. Thus, Hdac1 has a dual role in tumorigenesis: oncosuppressive in the early stages, and oncogenic in established tumor cells.


Assuntos
Transformação Celular Neoplásica/genética , Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Leucemia Promielocítica Aguda/etiologia , Leucemia Promielocítica Aguda/prevenção & controle , Proteína Supressora de Tumor p53/fisiologia , Animais , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/patologia , Feminino , Citometria de Fluxo , Instabilidade Genômica , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/antagonistas & inibidores , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Leucemia Promielocítica Aguda/mortalidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxa de Sobrevida , Células Tumorais Cultivadas , Ácido Valproico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA