RESUMO
The use of plants as heterologous hosts is one of the most promising technologies for manufacturing valuable recombinant proteins. Plant seeds, in particular, constitute ideal production platforms for long-term applications requiring a steady supply of starting material, as they combine the general advantages of plants as bioreactors with the possibility of biomass storage for long periods in a relatively small volume, thus allowing manufacturers to decouple upstream and downstream processing. In the present work we have used transgenic tobacco seeds to produce large amounts of a functionally active mouse monoclonal antibody against the Hepatitis B Virus surface antigen, fused to a KDEL endoplasmic reticulum retrieval motif, under control of regulatory sequences from common bean (Phaseolus vulgaris) seed storage proteins. The antibody accumulated to levels of 6.5 mg/g of seed in the T3 generation, and was purified by Protein A affinity chromatography combined with SEC-HPLC. N-glycan analysis indicated that, despite the KDEL signal, the seed-derived plantibody bore both high-mannose and complex-type sugars that indicate partial passage through the Golgi compartment, although its performance in the immunoaffinity purification of HBsAg was unaffected. An analysis discussing the industrial feasibility of replacing the currently used tobacco leaf-derived plantibody with this seed-derived variant is also presented.
Assuntos
Antígenos de Superfície da Hepatite B/imunologia , Nicotiana/embriologia , Planticorpos/imunologia , Sementes/imunologia , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida/métodos , Eletroforese em Gel de Poliacrilamida , Antígenos de Superfície da Hepatite B/isolamento & purificaçãoRESUMO
The MITF transcription factor and the RAS/RAF/MEK/ERK pathway are two interconnected main players in melanoma. Understanding how MITF activity is regulated represents a key question since its dynamic modulation is involved in the phenotypic plasticity of melanoma cells and their resistance to therapy. By investigating the role of ARAF in NRAS-driven mouse melanoma through mass spectrometry experiments followed by a functional siRNA-based screen, we unexpectedly identified MITF as a direct ARAF partner. Interestingly, this interaction is conserved among the RAF protein kinase family since BRAF/MITF and CRAF/MITF complexes were also observed in the cytosol of NRAS-mutated mouse melanoma cells. The interaction occurs through the kinase domain of RAF proteins. Importantly, endogenous BRAF/MITF complexes were also detected in BRAF-mutated human melanoma cells. RAF/MITF complexes modulate MITF nuclear localization by inducing an accumulation of MITF in the cytoplasm, thus negatively controlling its transcriptional activity. Taken together, our study highlights a new level of regulation between two major mediators of melanoma progression, MITF and the MAPK/ERK pathway, which appears more complex than previously anticipated.
Assuntos
Melanoma/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Quinases raf/metabolismo , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Fator de Transcrição Associado à Microftalmia/genética , Quinases raf/genéticaRESUMO
Retinoblastoma is the most frequent intraocular malignancy in children, originating from a maturing cone precursor in the developing retina. Little is known on the molecular basis underlying the biological and clinical behavior of this cancer. Here, using multi-omics data, we demonstrate the existence of two retinoblastoma subtypes. Subtype 1, of earlier onset, includes most of the heritable forms. It harbors few genetic alterations other than the initiating RB1 inactivation and corresponds to differentiated tumors expressing mature cone markers. By contrast, subtype 2 tumors harbor frequent recurrent genetic alterations including MYCN-amplification. They express markers of less differentiated cone together with neuronal/ganglion cell markers with marked inter- and intra-tumor heterogeneity. The cone dedifferentiation in subtype 2 is associated with stemness features including low immune and interferon response, E2F and MYC/MYCN activation and a higher propensity for metastasis. The recognition of these two subtypes, one maintaining a cone-differentiated state, and the other, more aggressive, associated with cone dedifferentiation and expression of neuronal markers, opens up important biological and clinical perspectives for retinoblastomas.
Assuntos
Células Fotorreceptoras Retinianas Cones/patologia , Células Ganglionares da Retina/metabolismo , Neoplasias da Retina/classificação , Retinoblastoma/classificação , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Desdiferenciação Celular/genética , Pré-Escolar , Metilação de DNA , Feminino , Expressão Gênica , Heterogeneidade Genética , Humanos , Lactente , Masculino , Mutação , Proteína Proto-Oncogênica N-Myc/genética , Metástase Neoplásica , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Ganglionares da Retina/patologia , Neoplasias da Retina/genética , Neoplasias da Retina/metabolismo , Neoplasias da Retina/patologia , Retinoblastoma/genética , Retinoblastoma/metabolismo , Retinoblastoma/patologiaRESUMO
Medulloblastoma (MB) is a pediatric tumor of the cerebellum divided into four groups. Group 3 is of bad prognosis and remains poorly characterized. While the current treatment involving surgery, radiotherapy, and chemotherapy often fails, no alternative therapy is yet available. Few recurrent genomic alterations that can be therapeutically targeted have been identified. Amplifications of receptors of the TGFß/Activin pathway occur at very low frequency in Group 3 MB. However, neither their functional relevance nor activation of the downstream signaling pathway has been studied. We showed that this pathway is activated in Group 3 MB with some samples showing a very strong activation. Beside genetic alterations, we demonstrated that an ActivinB autocrine stimulation is responsible for pathway activation in a subset of Group 3 MB characterized by high PMEPA1 levels. Importantly, Galunisertib, a kinase inhibitor of the cognate receptors currently tested in clinical trials for Glioblastoma patients, showed efficacy on orthotopically grafted MB-PDX. Our data demonstrate that the TGFß/Activin pathway is active in a subset of Group 3 MB and can be therapeutically targeted.