Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 22(12): 100684, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37993102

RESUMO

Fasciola hepatica is a global helminth parasite of humans and their livestock. The invasive stage of the parasite, the newly excysted juvenile (NEJs), relies on glycosylated excreted-secreted (ES) products and surface/somatic molecules to interact with host cells and tissues and to evade the host's immune responses, such as disarming complement and shedding bound antibody. While -omics technologies have generated extensive databases of NEJs' proteins and their expression, detailed knowledge of the glycosylation of proteins is still lacking. Here, we employed glycan, glycopeptide, and proteomic analyses to determine the glycan profile of proteins within the NEJs' somatic (Som) and ES extracts. These analyses characterized 123 NEJ glycoproteins, 71 of which are secreted proteins, and allowed us to map 356 glycopeptides and their associated 1690 N-glycan and 37 O-glycan forms to their respective proteins. We discovered abundant micro-heterogeneity in the glycosylation of individual glycosites and between different sites of multi-glycosylated proteins. The global heterogeneity across NEJs' glycoproteome was refined to 53 N-glycan and 16 O-glycan structures, ranging from highly truncated paucimannosidic structures to complex glycans carrying multiple phosphorylcholine (PC) residues, and included various unassigned structures due to unique linkages, particularly in pentosylated O-glycans. Such exclusive glycans decorate some well-known secreted molecules involved in host invasion, including cathepsin B and L peptidases, and a variety of membrane-bound glycoproteins, suggesting that they participate in host interactions. Our findings show that F. hepatica NEJs generate exceptional protein variability via glycosylation, suggesting that their molecular portfolio that communicates with the host is far more complex than previously anticipated by transcriptomic and proteomic analyses. This study opens many avenues to understand the glycan biology of F. hepatica throughout its life-stages, as well as other helminth parasites, and allows us to probe the glycosylation of individual NEJs proteins in the search for innovative diagnostics and vaccines against fascioliasis.


Assuntos
Fasciola hepatica , Animais , Humanos , Fasciola hepatica/fisiologia , Proteômica , Secretoma , Glicoproteínas/metabolismo , Polissacarídeos/metabolismo , Glicoproteínas de Membrana/metabolismo
2.
EMBO Rep ; 22(4): e51349, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33586859

RESUMO

Neurexins are presynaptic adhesion molecules that shape the molecular composition of synapses. Diversification of neurexins in numerous isoforms is believed to confer synapse-specific properties by engaging with distinct ligands. For example, a subset of neurexin molecules carry a heparan sulfate (HS) glycosaminoglycan that controls ligand binding, but how this post-translational modification is controlled is not known. Here, we observe that CA10, a ligand to neurexin in the secretory pathway, regulates neurexin-HS formation. CA10 is exclusively found on non-HS neurexin and CA10 expressed in neurons is sufficient to suppress HS addition and attenuate ligand binding and synapse formation induced by ligands known to recruit HS. This effect is mediated by a direct interaction in the secretory pathway that blocks the primary step of HS biosynthesis: xylosylation of the serine residue. NMR reveals that CA10 engages residues on either side of the serine that can be HS-modified, suggesting that CA10 sterically blocks xylosyltransferase access in Golgi. These results suggest a mechanism for the regulation of HS on neurexins and exemplify a new mechanism to regulate site-specific glycosylations.


Assuntos
Proteínas do Tecido Nervoso , Moléculas de Adesão de Célula Nervosa , Proteínas de Ligação ao Cálcio/metabolismo , Heparitina Sulfato/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Via Secretória , Sinapses/metabolismo
3.
Biol Cell ; 114(6): 160-176, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35304921

RESUMO

BACKGROUND INFORMATION: Like most other cell surface proteins, α5 ß1 integrin is glycosylated, which is required for its various activities in ways that mostly remain to be determined. RESULTS: Here, we have established the first comprehensive site-specific glycan map of α5 ß1 integrin that was purified from a natural source, that is, rat liver. This analysis revealed striking site selective variations in glycan composition. Complex bi, tri, or tetraantennary N-glycans were predominant at various proportions at most potential N-glycosylation sites. A few of these sites were nonglycosylated or contained high mannose or hybrid glycans, indicating that early N-glycan processing was hindered. Almost all complex N-glycans had fully galactosylated and sialylated antennae. Moderate levels of core fucosylation and high levels of O-acetylation of NeuAc residues were observed at certain sites. An O-linked HexNAc was found in an EGF-like domain of ß1 integrin. The extensive glycan information that results from our study was projected onto a map of α5 ß1 integrin that was obtained by homology modeling. We have used this model for the discussion of how glycosylation might be used in the functional cycle of α5 ß1 integrin. A striking example concerns the involvement of glycan-binding galectins in the regulation of the molecular homeostasis of glycoproteins at the cell surface through the formation of lattices or endocytic pits according to the glycolipid-lectin (GL-Lect) hypothesis. CONCLUSION: We expect that the glycoproteomics data of the current study will serve as a resource for the exploration of structural mechanisms by which glycans control α5 ß1 integrin activity and endocytic trafficking. SIGNIFICANCE: Glycosylation of α5 ß1 integrin has been implicated in multiple aspects of integrin function and structure. Yet, detailed knowledge of its glycosylation, notably the specific sites of glycosylation, is lacking. Furthermore, the α5 ß1 integrin preparation that was analyzed here is from a natural source, which is of importance as there is not a lot of literature in the field about the glycosylation of "native" glycoproteins.


Assuntos
Integrina alfa5 , Integrina beta1 , Polissacarídeos , Animais , Glicoproteínas/química , Glicosilação , Integrina alfa5/química , Integrina beta1/química , Fígado/metabolismo , Polissacarídeos/química , Ratos
4.
Clin Proteomics ; 19(1): 20, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668386

RESUMO

BACKGROUND: There is a lack of early and precise biomarkers for personalized respiratory medicine. Breath contains an aerosol of droplet particles, which are formed from the epithelial lining fluid when the small airways close and re-open during inhalation succeeding a full expiration. These particles can be collected by impaction using the PExA® method (Particles in Exhaled Air), and are derived from an area of high clinical interest previously difficult to access, making them a potential source of biomarkers reflecting pathological processes in the small airways. RESEARCH QUESTION: Our aim was to investigate if PExA method is useful for discovery of biomarkers that reflect pathology of small airways. METHODS AND ANALYSIS: Ten healthy controls and 20 subjects with asthma, of whom 10 with small airway involvement as indicated by a high lung clearance index (LCI ≥ 2.9 z-score), were examined in a cross-sectional design, using the PExA instrument. The samples were analysed with the SOMAscan proteomics platform (SomaLogic Inc.). RESULTS: Two hundred-seven proteins were detected in up to 80% of the samples. Nine proteins showed differential abundance in subjects with asthma and high LCI as compared to healthy controls. Two of these were less abundant (ALDOA4, C4), and seven more abundant (FIGF, SERPINA1, CD93, CCL18, F10, IgM, IL1RAP). sRAGE levels were lower in ex-smokers (n = 14) than in never smokers (n = 16). Gene Ontology (GO) annotation database analyses revealed that the PEx proteome is enriched in extracellular proteins associated with extracellular exosome-vesicles and innate immunity. CONCLUSION: The applied analytical method was reproducible and allowed identification of pathologically interesting proteins in PEx samples from asthmatic subjects with high LCI. The results suggest that PEx based proteomics is a novel and promising approach to study respiratory diseases with small airway involvement.

5.
Respir Res ; 20(1): 214, 2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31558154

RESUMO

INTRODUCTION: At present, there are few methods available for monitoring respiratory diseases affecting distal airways. Bronchoscopy is the golden standard for sampling the lower airways. The recently developed method for collecting non-volatile material from exhaled air - PExA (Particles in Exhaled air) is a promising new tool, but no direct comparison between the two methods has yet been performed. The aim of the present study was to compare sampling using PExA with bronchial wash (BW) representing the larger more proximal airways and broncho-alveolar lavage (BAL) representing the distal airways. METHODS: 15 healthy non-smoking subjects (7 female/8 male), age 28 ± 4 years, with normal lung function were included in the study. PExA-sampling (2 × 250 ng particles) and bronchoscopy with BW (2 × 20 ml) and BAL (3 × 60 ml sterile saline) was performed. Albumin and Surfactant Protein A (SP-A) were analyzed with ELISA, and analyses of correlation were performed. RESULTS: A significant association was found between BAL-fluid albumin and PExA-albumin (rs:0.65 p = 0.01). There was also an association between SP-A in PExA and BAL, when corrected for albumin concentration (rs:0.61, p = 0.015). When correlating concentrations of albumin and SP-A in bronchial wash and PExA respectively, no associations were found. CONCLUSIONS: This is the first direct comparison between the bronchoscopy-based BW/BAL-fluids and material collected using the PExA methodology. Both albumin and albumin-corrected SP-A concentrations were significantly associated between BAL and PExA, however, no such association was found in either marker between BW and PExA. These results indicate that the PExA method samples the distal airways. PExA is thus considered a new promising non-invasive assessment for monitoring of the distal airways.


Assuntos
Lavagem Broncoalveolar/métodos , Monitorização Fisiológica/métodos , Proteína A Associada a Surfactante Pulmonar/análise , Adulto , Ar/análise , Albuminas/análise , Biomarcadores , Líquido da Lavagem Broncoalveolar/química , Broncoscopia , Expiração , Feminino , Voluntários Saudáveis , Humanos , Masculino , Adulto Jovem
7.
Clin Chem ; 62(1): 84-91, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26578691

RESUMO

BACKGROUND: Exhaled breath contains nonvolatile substances that are part of aerosol particles of submicrometer size. These particles are formed and exhaled as a result of normal breathing and contain material from distal airways of the respiratory system. Exhaled breath can be used to monitor biomarkers of both endogenous and exogenous origin and constitutes an attractive specimen for medical investigations. CONTENT: This review summarizes the present status regarding potential biomarkers of nonvolatile compounds in exhaled breath. The field of exhaled breath condensate is briefly reviewed, together with more recent work on more selective collection procedures for exhaled particles. The relation of these particles to the surfactant in the terminal parts of the respiratory system is described. The literature on potential endogenous low molecular weight compounds as well as protein biomarkers is reviewed. The possibility to measure exposure to therapeutic and abused drugs is demonstrated. Finally, the potential future role and importance of mass spectrometry is discussed. SUMMARY: Nonvolatile compounds exit the lung as aerosol particles that can be sampled easily and selectively. The clinical applications of potential biomarkers in exhaled breath comprise diagnosis of disease, monitoring of disease progress, monitoring of drug therapy, and toxicological investigations.


Assuntos
Biomarcadores/análise , Testes Respiratórios/métodos , Técnicas de Laboratório Clínico , Expiração , Espectrometria de Massas , Humanos , Tamanho da Partícula
8.
Respir Res ; 17(1): 115, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27646537

RESUMO

BACKGROUND: Nocturnal gastroesophageal reflux (nGER) is associated with respiratory symptoms and sleep-disordered breathing (SDB), but the pathogenesis is unclear. We aimed to investigate the association between nGER and respiratory symptoms, exacerbations of respiratory symptoms, SDB and airway inflammation. METHODS: Participants in the European Community Respiratory Health Survey III in Iceland with nGER symptoms (n = 48) and age and gender matched controls (n = 42) were studied by questionnaires, exhaled breath condensate (EBC), particles in exhaled air (PEx) measurements, and a home polygraphic study. An exacerbation of respiratory symptoms was defined as an episode of markedly worse respiratory symptoms in the previous 12 months. RESULTS: Asthma and bronchitis symptoms were more common among nGER subjects than controls (54 % vs 29 %, p = 0.01; and 60 % vs 26 %, p < 0.01, respectively), as were exacerbations of respiratory symptoms (19 % vs 5 %, p = 0.04). Objectively measured snoring was more common among subjects with nGER than controls (snores per hour of sleep, median (IQR): 177 (79-281) vs 67 (32-182), p = 0.004). Pepsin (2.5 ng/ml (0.8-5.8) vs 0.8 ng/ml (0.8-3.6), p = 0.03), substance P (741 pg/ml (626-821) vs 623 pg/ml (562-676), p < 0.001) and 8-isoprostane (3.0 pg/ml (2.7-3.9) vs 2.6 pg/ml (2.2-2.9), p = 0.002) in EBC were higher among nGER subjects than controls. Albumin and surfactant protein A in PEx were lower among nGER subjects. These findings were independent of BMI. CONCLUSION: In a general population sample, nGER is associated with symptoms of asthma and bronchitis, as well as exacerbations of respiratory symptoms. Also, nGER is associated with increased respiratory effort during sleep. Biomarker measurements in EBC, PEx and serum indicate that micro-aspiration and neurogenic inflammation are plausible mechanisms.


Assuntos
Ritmo Circadiano , Refluxo Gastroesofágico/epidemiologia , Pulmão/fisiopatologia , Respiração , Síndromes da Apneia do Sono/epidemiologia , Sono , Adulto , Idoso , Asma/diagnóstico , Asma/epidemiologia , Asma/fisiopatologia , Biomarcadores/sangue , Testes Respiratórios , Bronquite/diagnóstico , Bronquite/epidemiologia , Bronquite/fisiopatologia , Estudos de Casos e Controles , Progressão da Doença , Expiração , Feminino , Refluxo Gastroesofágico/sangue , Refluxo Gastroesofágico/diagnóstico , Refluxo Gastroesofágico/fisiopatologia , Inquéritos Epidemiológicos , Humanos , Islândia/epidemiologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Síndromes da Apneia do Sono/sangue , Síndromes da Apneia do Sono/diagnóstico , Síndromes da Apneia do Sono/fisiopatologia , Fatores de Tempo
9.
EMBO J ; 29(19): 3344-57, 2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-20818332

RESUMO

Regulation of centrosome structure, duplication and segregation is integrated into cellular pathways that control cell cycle progression and growth. As part of these pathways, numerous proteins with well-established non-centrosomal localization and function associate with the centrosome to fulfill regulatory functions. In turn, classical centrosomal components take up functional and structural roles as part of other cellular organelles and compartments. Thus, although a comprehensive inventory of centrosome components is missing, emerging evidence indicates that its molecular composition reflects the complexity of its functions. We analysed the Drosophila embryonic centrosomal proteome using immunoisolation in combination with mass spectrometry. The 251 identified components were functionally characterized by RNA interference. Among those, a core group of 11 proteins was critical for centrosome structure maintenance. Depletion of any of these proteins in Drosophila SL2 cells resulted in centrosome disintegration, revealing a molecular dependency of centrosome structure on components of the protein translation machinery, actin- and RNA-binding proteins. In total, we assigned novel centrosome-related functions to 24 proteins and confirmed 13 of these in human cells.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrossomo/química , Proteínas Cromossômicas não Histona/metabolismo , Drosophila/química , Mitose/fisiologia , Animais , Proteínas de Ciclo Celular/genética , Centrossomo/fisiologia , Proteínas Cromossômicas não Histona/genética , Drosophila/fisiologia , Embrião não Mamífero/metabolismo , Embrião não Mamífero/fisiologia , Espectrometria de Massas , Proteômica/métodos , Interferência de RNA
10.
JBMR Plus ; 8(2): ziae006, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38505526

RESUMO

Tissue-nonspecific alkaline phosphatase (TNALP) is a glycoprotein expressed by osteoblasts that promotes bone mineralization. TNALP catalyzes the hydrolysis of the mineralization inhibitor inorganic pyrophosphate and ATP to provide inorganic phosphate, thus controlling the inorganic pyrophosphate/inorganic phosphate ratio to enable the growth of hydroxyapatite crystals. N-linked glycosylation of TNALP is essential for protein stability and enzymatic activity and is responsible for the presence of different bone isoforms of TNALP associated with functional and clinical differences. The site-specific glycosylation profiles of TNALP are, however, elusive. TNALP has 5 potential N-glycosylation sites located at the asparagine (N) residues 140, 230, 271, 303, and 430. The objective of this study was to reveal the presence and structure of site-specific glycosylation in TNALP expressed in osteoblasts. Calvarial osteoblasts derived from Alpl+/- expressing SV40 Large T antigen were transfected with soluble epitope-tagged human TNALP. Purified TNALP was analyzed with a lectin microarray, matrix-assisted laser desorption/ionization-time of flight mass spectrometry, and liquid chromatography with tandem mass spectrometry. The results showed that all sites (n = 5) were fully occupied predominantly with complex-type N-glycans. High abundance of galactosylated biantennary N-glycans with various degrees of sialylation was observed on all sites, as well as glycans with no terminal galactose and sialic acid. Furthermore, all sites had core fucosylation except site N271. Modelling of TNALP, with the protein structure prediction software ColabFold, showed possible steric hindrance by the adjacent side chain of W270, which could explain the absence of core fucosylation at N271. These novel findings provide evidence for N-linked glycosylation on all 5 sites of TNALP, as well as core fucosylation on 4 out of 5 sites. We anticipate that this new knowledge can aid in the development of functional and clinical assays specific for the TNALP bone isoforms.

11.
Osteoarthr Cartil Open ; 5(3): 100380, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37426292

RESUMO

Objective: To validate a quantitative high performance liquid chromatography (HPLC) assay for chondroitin sulfate (CS) and hyaluronic acid (HA) in synovial fluid, and to analyze glycan-patterns in patient samples. Design: Synovial fluid from osteoarthritis (OA, n â€‹= â€‹25) and knee-injury (n â€‹= â€‹13) patients, a synovial fluid pool (SF-control) and purified aggrecan, were chondroitinase digested and together with CS- and HA-standards fluorophore labelled prior to quantitative HPLC analysis. N-glycan profiles of synovial fluid and aggrecan were assessed by mass spectrometry. Results: Unsaturated uronic acid and sulfated-N-acetylgalactosamine (ΔUA-GalNAc4S and ΔUA-GalNAc6S) contributed to 95% of the total CS-signal in the SF-control sample. For HA and the CS variants in SF-control the intra- and inter-experiment coefficient of variation was between 3-12% and 11-19%, respectively; tenfold dilution gave recoveries between 74 and 122%, and biofluid stability test (room temperature storage and freeze-thaw cycles) showed recoveries between 81 and 140%. Synovial fluid concentrations of the CS variants ΔUA-GalNAc6S and ΔUA2S-GalNAc6S were three times higher in the recent injury group compared to the OA group, while HA was four times lower. Sixty-one different N-glycans were detected in the synovial fluid samples, but there were no differences in levels of N-glycan classes between patient groups. The CS-profile (levels of ΔUA-GalNAc4S and ΔUA-GalNAc6S) in synovial fluid resembled that of purified aggrecan from corresponding samples; the contribution to the N-glycan profile in synovial fluid from aggrecan was low. Conclusions: The HPLC-assay is suitable for analyzing CS variants and HA in synovial fluid samples, and the GAG-pattern differs between OA and recently knee injured subjects.

12.
Clin Chem ; 58(2): 431-40, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22156667

RESUMO

BACKGROUND: We recently developed a novel, noninvasive method for sampling nonvolatile material from the distal airways. The method is based on the collection of endogenous particles in exhaled air (PEx). The aim of this study was to characterize the protein composition of PEx and to verify that the origin of PEx is respiratory tract lining fluid (RTLF). METHOD: Healthy individuals exhaled into the sampling device, which collected PEx onto a silicon plate inside a 3-stage impactor. After their extraction from the plates, PEx proteins were separated by SDS-PAGE and then analyzed by LC-MS. Proteins were identified by searching the International Protein Index human database with the Mascot search engine. RESULTS: Analysis of the pooled samples identified 124 proteins. A comparison of the identified PEx proteins with published bronchoalveolar lavage (BAL) proteomic data showed a high degree of overlap, with 103 (83%) of the PEx proteins having previously been detected in BAL. The relative abundances of the proteins were estimated according to the Mascot exponentially modified protein abundance index protocol and were in agreement with the expected protein composition of RTLF. No amylase was detected, indicating the absence of saliva protein contamination with our sampling technique. CONCLUSIONS: Our data strongly support that PEx originate from RTLF and reflect the composition of undiluted RTLF.


Assuntos
Testes Respiratórios/métodos , Pulmão/química , Proteínas/análise , Adulto , Citoplasma/química , Expiração , Espaço Extracelular/química , Feminino , Humanos , Masculino , Proteínas de Membrana/análise , Pessoa de Meia-Idade , Proteômica
13.
ACS Infect Dis ; 8(9): 1883-1893, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-35980012

RESUMO

The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is a conserved domain and a target for neutralizing antibodies. We defined the carbohydrate content of the recombinant RBD produced in different mammalian cells. We found a higher degree of complex-type N-linked glycans, with less sialylation and more fucosylation, when the RBD was produced in human embryonic kidney cells compared to the same protein produced in Chinese hamster ovary cells. The carbohydrates on the RBD proteins were enzymatically modulated, and the effect on antibody reactivity was evaluated with serum samples from SARS-CoV-2 positive patients. Removal of all carbohydrates diminished antibody reactivity, while removal of only sialic acids or terminal fucoses improved the reactivity. The RBD produced in Lec3.2.8.1-cells, which generate carbohydrate structures devoid of sialic acids and with reduced fucose content, exhibited enhanced antibody reactivity, verifying the importance of these specific monosaccharides. The results can be of importance for the design of future vaccine candidates, indicating that it is possible to enhance the immunogenicity of recombinant viral proteins.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Antivirais , Células CHO , Cricetinae , Cricetulus , Fucose , Humanos , Imunoglobulina G , Ácido N-Acetilneuramínico , Glicoproteína da Espícula de Coronavírus
15.
BMJ Open Respir Res ; 8(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33402401

RESUMO

INTRODUCTION: Respiratory tract lining fluid of small airways mainly consists of surfactant that can be investigated by collection of the particles of exhaled aerosol (PExA) method. This offers an exciting prospect to monitor small airway pathology, including subjects with asthma and smokers. AIM: To explore the influence of anthropometric factors and gender on phospholipids, surfactant protein A (SP-A) and albumin of the lining fluid of small airwaysand to examine the association with asthma and smoking. Furthermore, to examine if the surfactant components can predict lung function in terms of spirometry variables. METHOD: This study employs the population-based cohort of the European Community Respiratory Health Survey III, including participants from Gothenburg city, Sweden (n=200). The PExA method enabled quantitative description and analytical analysis of phospholipids, SP-A and albumin of the lining fluid of small airways. RESULTS: Age was a significant predictor of the phospholipids. The components PC14:0/16:0, PC16:0/18:2 (PC, phosphatidylcholine) and SP-A were higher among subjects with asthma, whereas albumin was lower. Among smokers, there were higher levels particularly of di-palmitoyl-di-phosphatidyl-choline compared with non-smokers. Most phospholipids significantly predicted the spirometry variables. CONCLUSION: This non-invasive PExA method appears to have great potential to explore the role of lipids and proteins of surfactant in respiratory disease.


Assuntos
Asma , Expiração , Asma/diagnóstico , Estudos de Coortes , Humanos , Proteína A Associada a Surfactante Pulmonar , Espirometria
16.
Proteomics ; 9(8): 2131-8, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19322786

RESUMO

This study illustrates multifunctionality of proteins of honeybee royal jelly (RJ) and how their neofunctionalization result from various PTMs of maternal proteins. Major proteins of RJ, designated as apalbumins belong to a protein family consisting of nine members with M(r) of 49-87 kDa and they are accompanied by high number of minority homologs derived from maternal apalbumins. In spite of many data on diversity of apalbumins, the molecular study of their individual minority homologous is still missing. This work is a contribution to functional proteomics of second most abundant protein of RJ apalbumin2 (M(r) 52.7 kDa). We have purified a minority protein from RJ; named as apalbumin2a, differ from apalbumin2 in M(r) (48.6 kDa), in N-terminal amino acids sequences - ENSPRN and in N-linked glycans. Characterization of apalbumin2a by LC-MALDI TOF/TOF MS revealed that it is a minority homolog of the major basic royal jelly protein, apalbumin2, carrying two fully occupied N-glycosylation sites, one with high-mannose structure, HexNAc2Hex9, and another carrying complex type antennary structures, HexNAc4Hex3 and HexNAc5Hex4. We have found that apalbumin2a inhibit growth of Paenibacillus larvae. The obtained data call attention to functional plasticity of RJ proteins with potential impact on functional proteomics in medicine.


Assuntos
Abelhas/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Animais , Bacillus/metabolismo , Ácidos Graxos , Glicosilação , Proteínas de Insetos/isolamento & purificação , Dados de Sequência Molecular , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
Glycoconj J ; 26(1): 3-17, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18604640

RESUMO

Trichomonas vaginalis causes the most common non-viral sexually transmitted infection linked to increased risk of premature birth, cervical cancer and HIV. This study defines molecular domains of the parasite surface glycoconjugate lipophosphoglycan (LPG) with distinct functions in the host immunoinflammatory response. The ceramide phospho-inositol glycan core (CPI-GC) released by mild acid had Mr of approximately 8,700 Da determined by MALDI-TOF MS. Rha, GlcN, Gal and Xyl and small amounts of GalN and Glc were found in CPI-GC. N-acetyllactosamine repeats were identified by endo-beta-galactosidase treatment followed by MALDI-MS and MS/MS and capLC/ESI-MS/MS analyses. Mild acid hydrolysis led to products rich in internal deoxyhexose residues. The CPI-GC induced chemokine production, NF-kappaB and extracellular signal-regulated kinase (ERK)1/2 activation in human cervicovaginal epithelial cells, but neither the released saccharide components nor the lipid-devoid LPG showed these activities. These results suggest a dominant role for CPI-GC in the pathogenic epithelial response to trichomoniasis.


Assuntos
Células Epiteliais/imunologia , Glicoesfingolipídeos/química , Glicoesfingolipídeos/imunologia , Vaginite por Trichomonas/imunologia , Trichomonas vaginalis/química , Trichomonas vaginalis/imunologia , Animais , Linhagem Celular Transformada , Colo do Útero/imunologia , Colo do Útero/parasitologia , Quimiocinas/imunologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/imunologia , Feminino , Glicoesfingolipídeos/farmacologia , Humanos , Hidrólise , Masculino , Proteína Quinase 1 Ativada por Mitógeno/imunologia , Proteína Quinase 3 Ativada por Mitógeno/imunologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Vagina/imunologia , Vagina/parasitologia
18.
AMB Express ; 9(1): 126, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31407106

RESUMO

Heterologous protein production is widely used in industrial biotechnology. However, using non-native production hosts can lead to enzymes with altered post-translational modifications, such as glycosylation. We have investigated how production in a non-native host affects the physicochemical properties and enzymatic activity of a feruloyl esterase from Myceliophthora thermophila, MtFae1a. The enzyme was produced in two microorganisms that introduce glycosylation (M. thermophila and Pichia pastoris) and in Escherichia coli (non-glycosylated). Mass spectrometric analysis confirmed the presence of glycosylation and revealed differences in the lengths of glycan chains between the enzymes produced in M. thermophila and P. pastoris. The melting temperature and the optimal temperature for activity of the non-glycosylated enzyme were considerably lower than those of the glycosylated enzymes. The three MtFae1a versions also exhibited differences in specific activity and specificity. The catalytic efficiency of the glycosylated enzymes were more than 10 times higher than that of the non-glycosylated one. In biotechnology, immobilization is often used to allow reusing enzyme and was investigated on mesoporous silica particles. We found the binding kinetics and immobilization yield differed between the enzyme versions. The largest differences were observed when comparing enzymes with and without glycosylation, but significant variations were also observed between the two differently glycosylated enzymes. We conclude that the biotechnological value of an enzyme can be optimized for a specific application by carefully selecting the production host.

19.
J Am Soc Mass Spectrom ; 29(6): 1065-1074, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29644549

RESUMO

The structural study of glycans and glycoconjugates is essential to assign their roles in homeostasis, health, and disease. Once dominated by nuclear magnetic resonance spectroscopy, mass spectrometric methods have become the preferred toolbox for the determination of glycan structures at high sensitivity. The patterns of such structures in different cellular states now allow us to interpret the sugar codes in health and disease, based on structure-function relationships. Dr. Catherine E. Costello was the 2017 recipient of the American Society for Mass Spectrometry's Distinguished Contribution Award. In this Perspective article, we describe her seminal work in a historical and geographical context and review the impact of her research accomplishments in the field.8 ᅟ Graphical abstract.

20.
J Breath Res ; 12(4): 046012, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30102246

RESUMO

RATIONALE: Asthma is often characterised by inflammation, damage and dysfunction of the small airways, but no standardised biomarkers are available. OBJECTIVES: Using a novel approach-particles in exhaled air (PExA)-we sought to (a) sample and analyse abundant protein biomarkers: surfactant protein A (SPA) and albumin in adult asthmatic and healthy patients and (b) relate protein concentrations with physiological markers using phenotyping. METHODS: 83 adult asthmatics and 21 healthy volunteers were recruited from a discovery cohort in Leicester, UK, and 32 adult asthmatics as replication cohort from Sweden. Markers of airways closure/small airways dysfunction were evaluated using forced vital capacity, impulse oscillometry and multiple breath washout. SPA/albumin from PEx (PExA sample) were analysed using ELISA and corrected for acquired particle mass. Topological data analysis (TDA) was applied to small airway physiology and PExA protein data to identify phenotypes. RESULTS: PExA manoeuvres were feasible, including severe asthmatic subjects. TDA identified a clinically important phenotype of asthmatic patients with multiple physiological markers of peripheral airway dysfunction, and significantly lower levels of both SPA and albumin. CONCLUSION: We report that the PExA method is feasible across the spectrum of asthma severity and could be used to identify small airway disease phenotypes.


Assuntos
Ar , Asma/diagnóstico , Expiração , Adulto , Idoso , Albuminas/metabolismo , Asma/fisiopatologia , Testes Respiratórios , Estudos de Coortes , Análise de Dados , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Proteína A Associada a Surfactante Pulmonar/metabolismo , Reprodutibilidade dos Testes , Capacidade Vital
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA