Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
BMC Neurosci ; 23(1): 30, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614392

RESUMO

BACKGROUND: Therapeutic agents stimulating the process of myelination could be beneficial for the treatment of demyelinating diseases, such as multiple sclerosis. The efficient translation of compounds promoting myelination in vitro to efficacy in vivo is inherently time-consuming and expensive. Thyroid hormones accelerate the differentiation and maturation of oligodendrocytes, thereby promoting myelination. Systemic administration of the thyroid hormone thyroxine (T4) accelerates brain maturation, including myelination, during early postnatal development. The objective of this study was to validate an animal model for rapid testing of promyelinating therapeutic candidates for their effects on early postnatal development by using T4 as a reference compound. METHODS: Daily subcutaneous injections of T4 were given to Sprague Dawley rat pups from postnatal day (PND) 2 to PND10. Changes in white matter were determined at PND10 using diffusion tensor magnetic resonance imaging (DTI). Temporal changes in myelination from PND3 to PND11 were also assessed by quantifying myelin basic protein (MBP) expression levels in the brain using the resonance Raman spectroscopy/enzyme-linked immunosorbent assay (RRS-ELISA) and quantitative immunohistochemistry. RESULTS: DTI of white matter tracts showed significantly higher fractional anisotropy in the internal capsule of T4-treated rat pups. The distribution of total FA values in the forebrain was significantly shifted towards higher values in the T4-treated group, suggesting increased myelination. In vivo imaging data were supported by in vitro observations, as T4 administration significantly potentiated the developmental increase in MBP levels in brain lysates starting from PND8. MBP levels in the brain of animals that received treatment for 9 days correlated with the FA metric determined in the same pups in vivo a day earlier. Furthermore, accelerated developmental myelination following T4 administration was confirmed by immunohistochemical staining for MBP in coronal brain sections of treated rat pups. CONCLUSIONS: T4-treated rat pups had increased MBP expression levels and higher MRI fractional anisotropy values, both indications of accelerated myelination. This simple developmental myelination model affords a rapid test of promyelinating activity in vivo within several days, which could facilitate in vivo prescreening of candidate therapeutic compounds for developmental hypomyelinating diseases. Further research will be necessary to assess the utility of this platform for screening promyelination compounds in more complex demyelination disease models, such us multiple sclerosis.


Assuntos
Esclerose Múltipla , Substância Branca , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Esclerose Múltipla/metabolismo , Oligodendroglia/metabolismo , Ratos , Ratos Sprague-Dawley , Substância Branca/patologia
2.
Brain Behav Immun Health ; 23: 100466, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35694175

RESUMO

Understanding the pathological mechanisms unfolding after chronic traumatic brain injury (TBI) could reveal new therapeutic entry points. During the post-TBI sequel, the involvement of cerebrospinal fluid drainage through the meningeal lymphatic vessels was proposed. Here, we used K14-VEGFR3-Ig transgenic mice to analyze whether a developmental dysfunction of meningeal lymphatic vessels modifies post-TBI pathology. To this end, a moderate TBI was delivered by controlled cortical injury over the temporal lobe in male transgenic mice or their littermate controls. We performed MRI and a battery of behavioral tests over time to define the post-TBI trajectories. In vivo analyses were integrated by ex-vivo quantitative and morphometric examinations of the cortical lesion and glial cells. In post-TBI K14-VEGFR3-Ig mice, the recovery from motor deficits was protracted compared to littermates. This outcome is coherent with the observed slower hematoma clearance in transgenic mice during the first two weeks post-TBI. No other genotype-related behavioral differences were observed, and the volume of cortical lesions imaged by MRI in vivo, and confirmed by histology ex-vivo, were comparable in both groups. However, at the cellular level, post-TBI K14-VEGFR3-Ig mice exhibited an increased percentage of activated Iba1 microglia in the hippocampus and auditory cortex, areas that are proximal to the lesion. Although not impacting or modifying the structural brain damage and post-TBI behavior, a pre-existing dysfunction of meningeal lymphatic vessels is associated with morphological microglial activation over time, possibly representing a sub-clinical pathological imprint or a vulnerability factor. Our findings suggest that pre-existing mLV deficits could represent a possible risk factor for the overall outcome of TBI pathology.

3.
Mol Neurobiol ; 53(10): 7010-7027, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26671618

RESUMO

To test the hypothesis that an amyloidogenic genetic background predisposes to worsening of post-TBI outcome, we investigated whether traumatic brain injury (TBI) in amyloid precursor protein (APP)/PS1 mice aggravates epileptogenesis and/or enhances somatomotor and cognitive impairment. To elaborate the mechanisms of worsening outcomes, we studied changes in the expression of genes involved in APP processing and Tau pathways in the perilesional cortex, ipsilateral thalamus, and ipsilateral hippocampus 16 weeks post-TBI. Mild (mTBI) or severe TBI (sTBI) was triggered using controlled cortical impact in 3-month-old APP/PS1 mice and wild-type (Wt) littermates. Morris water-maze revealed a genotype effect on spatial learning and memory as APP/PS1-sTBI mice performed more poorly than Wt-sTBI mice (p < 0.05). Epileptogenesis was affected by genotype and TBI as 88 % of APP/PS1-sTBI mice had epilepsy compared to 11 % in Wt-sTBI (genotype effect p < 0.01) or 50 % in APP/PS1-sham groups (TBI effect p < 0.05). The higher the seizure frequency, the higher the cortical expression of Nos1 (r = 0.83, p < 0.001) and Mapk3 (r = 0.67, p < 0.001). Immunohistochemical analysis confirmed increased amount of NOS1 protein in neuronal somata and processes in the perilesional cortex in APP/PS1-sTBI mice compared to APP/PS1-sham (p < 0.05) or Wt-sTBI mice (p < 0.01). Motor impairment correlated (p < 0.001) with the increased cortical expression of genes encoding proteins related to ß-amyloid (Aß) clearance, including Clu (r = 0.83), Abca1 (r = 0.78), A2m (r = 0.76), Apoe (r = 0.70), and Ctsd (r = 0.63). Immunohistochemical analysis revealed a focal reduction in Aß load lateral to lesion core in APP/PS1-sTBI mice compared to APP/PS1-sham mice (p < 0.05). The present study provides the first comprehensive evidence of exacerbated epileptogenesis and its molecular mechanisms in Alzheimer's disease (AD)-related genetic background after TBI.


Assuntos
Doença de Alzheimer/complicações , Peptídeos beta-Amiloides/metabolismo , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/metabolismo , Epilepsia/complicações , Óxido Nítrico Sintase Tipo I/metabolismo , Presenilina-1/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Animais , Astrócitos/metabolismo , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/patologia , Córtex Cerebral/patologia , Análise por Conglomerados , Modelos Animais de Doenças , Epilepsia/patologia , Epilepsia/fisiopatologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genótipo , Memória , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Aprendizagem Espacial , Transcrição Gênica , Proteínas tau/metabolismo
4.
Curr Alzheimer Res ; 13(7): 817-30, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26825094

RESUMO

Several Alzheimer model mice carrying transgenic amyloid precursor protein (APP) with the Swedish mutation have been reported to exhibit spontaneous seizures and/or increased epileptiform EEG activity. The primary cause for the epilepsy phenotype is still under debate. In contrast to mice with APPswe mutation that develop extracellular amyloid plaques, mice with APP Arctic mutation (E693G) have no bias toward ß-secretase cleavage and display intracellular amyloid deposits but not plaques. We conducted a systematic long-term video-EEG recording in three two-week sessions on 21 APParc and 11 wild-type control mice between 3.5 and 8 months of age. Spontaneous seizures were not detected more often in APParc mice than in their wild-type control mice. Long (1 - 5 s) epileptiform discharges were occasionally detected in both APParc and wild-type mice, but short (0.5 - <1 s) epileptiform discharges were more common in APParc mice than in wild-types. However, they were far less frequent than in 6 APPswe/PS1dE9 mice recorded in parallel. In pentylenetetrazole test for seizure susceptibility, APParc mice displayed a shorter latency to sharp-wave discharges than wildtype mice but no increase in seizure duration. These data speak for a relatively mild epilepsy phenotype in APParc mice compared to APPswe mice despite even higher extent of APP overexpression. Thus extracellular amyloid plaques or increased ß-secretase cleavage products appear important for the epilepsy phenotype in APPswe mice.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide/genética , Encéfalo/fisiopatologia , Regulação da Expressão Gênica/genética , Mutação/genética , Convulsões/genética , Fatores Etários , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Convulsivantes/toxicidade , Modelos Animais de Doenças , Eletroencefalografia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pentilenotetrazol/toxicidade , Convulsões/etiologia , Fases do Sono , Estatísticas não Paramétricas , Gravação em Vídeo , Vigília
5.
PLoS One ; 10(5): e0128285, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26020770

RESUMO

The goal of this study was to determine whether a substantial decrease in adult neurogenesis influences epileptogenesis evoked by the intra-amygdala injection of kainic acid (KA). Cyclin D2 knockout (cD2 KO) mice, which lack adult neurogenesis almost entirely, were used as a model. First, we examined whether status epilepticus (SE) evoked by an intra-amygdala injection of KA induces cell proliferation in cD2 KO mice. On the day after SE, we injected BrdU into mice for 5 days and evaluated the number of DCX- and DCX/BrdU-immunopositive cells 3 days later. In cD2 KO control animals, only a small number of DCX+ cells was observed. The number of DCX+ and DCX/BrdU+ cells/mm of subgranular layer in cD2 KO mice increased significantly following SE (p<0.05). However, the number of newly born cells was very low and was significantly lower than in KA-treated wild type (wt) mice. To evaluate the impact of diminished neurogenesis on epileptogenesis and early epilepsy, we performed video-EEG monitoring of wt and cD2 KO mice for 16 days following SE. The number of animals with seizures did not differ between wt (11 out of 15) and cD2 KO (9 out of 12) mice. The median latency to the first spontaneous seizure was 4 days (range 2-10 days) in wt mice and 8 days (range 2-16 days) in cD2 KO mice and did not differ significantly between groups. Similarly, no differences were observed in median seizure frequency (wt: 1.23, range 0.1-3.4; cD2 KO: 0.57, range 0.1-2.0 seizures/day) or median seizure duration (wt: 51 s, range 23-103; cD2 KO: 51 s, range 23-103). Our results indicate that SE-induced epileptogenesis is not disrupted in mice with markedly reduced adult neurogenesis. However, we cannot exclude the contribution of reduced neurogenesis to the chronic epileptic state.


Assuntos
Tonsila do Cerebelo , Ciclina D2/deficiência , Ácido Caínico/efeitos adversos , Neurogênese , Convulsões , Estado Epiléptico , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/patologia , Tonsila do Cerebelo/fisiopatologia , Animais , Proteína Duplacortina , Eletroencefalografia , Ácido Caínico/farmacologia , Camundongos , Camundongos Knockout , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Convulsões/induzido quimicamente , Convulsões/genética , Convulsões/metabolismo , Convulsões/patologia , Convulsões/fisiopatologia , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/genética , Estado Epiléptico/metabolismo , Estado Epiléptico/patologia , Estado Epiléptico/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA