Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(14): 2417-2433.e7, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37348497

RESUMO

Aged hematopoietic stem cells (HSCs) display diminished self-renewal and a myeloid differentiation bias. However, the drivers and mechanisms that underpin this fundamental switch are not understood. HSCs produce genotoxic formaldehyde that requires protection by the detoxification enzymes ALDH2 and ADH5 and the Fanconi anemia (FA) DNA repair pathway. We find that the HSCs in young Aldh2-/-Fancd2-/- mice harbor a transcriptomic signature equivalent to aged wild-type HSCs, along with increased epigenetic age, telomere attrition, and myeloid-biased differentiation quantified by single HSC transplantation. In addition, the p53 response is vigorously activated in Aldh2-/-Fancd2-/- HSCs, while p53 deletion rescued this aged HSC phenotype. To further define the origins of the myeloid differentiation bias, we use a GFP genetic reporter to find a striking enrichment of Vwf+ myeloid and megakaryocyte-lineage-biased HSCs. These results indicate that metabolism-derived formaldehyde-DNA damage stimulates the p53 response in HSCs to drive accelerated aging.


Assuntos
Envelhecimento , Aldeídos , Dano ao DNA , Hematopoese , Proteína Supressora de Tumor p53 , Animais , Camundongos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Aldeídos/metabolismo , Transcriptoma , Análise da Expressão Gênica de Célula Única , Células-Tronco Hematopoéticas/citologia , Células Mieloides/citologia , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia
2.
Nature ; 602(7895): 162-168, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35058638

RESUMO

Mutations in cancer-associated genes drive tumour outgrowth, but our knowledge of the timing of driver mutations and subsequent clonal dynamics is limited1-3. Here, using whole-genome sequencing of 1,013 clonal haematopoietic colonies from 12 patients with myeloproliferative neoplasms, we identified 580,133 somatic mutations to reconstruct haematopoietic phylogenies and determine clonal histories. Driver mutations were estimated to occur early in life, including the in utero period. JAK2V617F was estimated to have been acquired by 33 weeks of gestation to 10.8 years of age in 5 patients in whom JAK2V617F was the first event. DNMT3A mutations were acquired by 8 weeks of gestation to 7.6 years of age in 4 patients, and a PPM1D mutation was acquired by 5.8 years of age. Additional genomic events occurred before or following JAK2V617F acquisition and as independent clonal expansions. Sequential driver mutation acquisition was separated by decades across life, often outcompeting ancestral clones. The mean latency between JAK2V617F acquisition and diagnosis was 30 years (range 11-54 years). Estimated historical rates of clonal expansion varied substantially (3% to 190% per year), increased with additional driver mutations, and predicted latency to diagnosis. Our study suggests that early driver mutation acquisition and life-long growth and evolution underlie adult myeloproliferative neoplasms, raising opportunities for earlier intervention and a new model for cancer development.


Assuntos
Mutação , Transtornos Mieloproliferativos , Neoplasias , Adulto , Pré-Escolar , Células Clonais/patologia , Humanos , Janus Quinase 2/genética , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Filogenia , Proteína Fosfatase 2C , Sequenciamento Completo do Genoma
3.
Nature ; 606(7913): 335-342, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35650444

RESUMO

Clonal expansions driven by somatic mutations become pervasive across human tissues with age, including in the haematopoietic system, where the phenomenon is termed clonal haematopoiesis1-4. The understanding of how and when clonal haematopoiesis develops, the factors that govern its behaviour, how it interacts with ageing and how these variables relate to malignant progression remains limited5,6. Here we track 697 clonal haematopoiesis clones from 385 individuals 55 years of age or older over a median of 13 years. We find that 92.4% of clones expanded at a stable exponential rate over the study period, with different mutations driving substantially different growth rates, ranging from 5% (DNMT3A and TP53) to more than 50% per year (SRSF2P95H). Growth rates of clones with the same mutation differed by approximately ±5% per year, proportionately affecting slow drivers more substantially. By combining our time-series data with phylogenetic analysis of 1,731 whole-genome sequences of haematopoietic colonies from 7 individuals from an older age group, we reveal distinct patterns of lifelong clonal behaviour. DNMT3A-mutant clones preferentially expanded early in life and displayed slower growth in old age, in the context of an increasingly competitive oligoclonal landscape. By contrast, splicing gene mutations drove expansion only later in life, whereas TET2-mutant clones emerged across all ages. Finally, we show that mutations driving faster clonal growth carry a higher risk of malignant progression. Our findings characterize the lifelong natural history of clonal haematopoiesis and give fundamental insights into the interactions between somatic mutation, ageing and clonal selection.


Assuntos
Hematopoiese Clonal , Células Clonais , Idoso , Envelhecimento , Hematopoiese Clonal/genética , Células Clonais/citologia , Genoma Humano , Humanos , Estudos Longitudinais , Pessoa de Meia-Idade , Mutação , Filogenia
4.
Nature ; 608(7924): 724-732, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35948631

RESUMO

The lymphocyte genome is prone to many threats, including programmed mutation during differentiation1, antigen-driven proliferation and residency in diverse microenvironments. Here, after developing protocols for expansion of single-cell lymphocyte cultures, we sequenced whole genomes from 717 normal naive and memory B and T cells and haematopoietic stem cells. All lymphocyte subsets carried more point mutations and structural variants than haematopoietic stem cells, with higher burdens in memory cells than in naive cells, and with T cells accumulating mutations at a higher rate throughout life. Off-target effects of immunological diversification accounted for approximately half of the additional differentiation-associated mutations in lymphocytes. Memory B cells acquired, on average, 18 off-target mutations genome-wide for every on-target IGHV mutation during the germinal centre reaction. Structural variation was 16-fold higher in lymphocytes than in stem cells, with around 15% of deletions being attributable to off-target recombinase-activating gene activity. DNA damage from ultraviolet light exposure and other sporadic mutational processes generated hundreds to thousands of mutations in some memory cells. The mutation burden and signatures of normal B cells were broadly similar to those seen in many B-cell cancers, suggesting that malignant transformation of lymphocytes arises from the same mutational processes that are active across normal ontogeny. The mutational landscape of normal lymphocytes chronicles the off-target effects of programmed genome engineering during immunological diversification and the consequences of differentiation, proliferation and residency in diverse microenvironments.


Assuntos
Linfócitos , Mutação , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos B/patologia , Diferenciação Celular , Proliferação de Células , Microambiente Celular , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Centro Germinativo/citologia , Centro Germinativo/imunologia , Humanos , Memória Imunológica/genética , Linfócitos/citologia , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/patologia , Neoplasias/genética , Neoplasias/patologia
5.
Nature ; 606(7913): 343-350, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35650442

RESUMO

Age-related change in human haematopoiesis causes reduced regenerative capacity1, cytopenias2, immune dysfunction3 and increased risk of blood cancer4-6, but the reason for such abrupt functional decline after 70 years of age remains unclear. Here we sequenced 3,579 genomes from single cell-derived colonies of haematopoietic cells across 10 human subjects from 0 to 81 years of age. Haematopoietic stem cells or multipotent progenitors (HSC/MPPs) accumulated a mean of 17 mutations per year after birth and lost 30 base pairs per year of telomere length. Haematopoiesis in adults less than 65 years of age was massively polyclonal, with high clonal diversity and a stable population of 20,000-200,000 HSC/MPPs contributing evenly to blood production. By contrast, haematopoiesis in individuals aged over 75 showed profoundly decreased clonal diversity. In each of the older subjects, 30-60% of haematopoiesis was accounted for by 12-18 independent clones, each contributing 1-34% of blood production. Most clones had begun their expansion before the subject was 40 years old, but only 22% had known driver mutations. Genome-wide selection analysis estimated that between 1 in 34 and 1 in 12 non-synonymous mutations were drivers, accruing at constant rates throughout life, affecting more genes than identified in blood cancers. Loss of the Y chromosome conferred selective benefits in males. Simulations of haematopoiesis, with constant stem cell population size and constant acquisition of driver mutations conferring moderate fitness benefits, entirely explained the abrupt change in clonal structure in the elderly. Rapidly decreasing clonal diversity is a universal feature of haematopoiesis in aged humans, underpinned by pervasive positive selection acting on many more genes than currently identified.


Assuntos
Envelhecimento , Hematopoiese Clonal , Células Clonais , Longevidade , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Criança , Pré-Escolar , Hematopoiese Clonal/genética , Células Clonais/citologia , Feminino , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Células-Tronco Hematopoéticas/citologia , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Células-Tronco Multipotentes/citologia , Adulto Jovem
6.
Nature ; 595(7865): 85-90, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33981037

RESUMO

The ontogeny of the human haematopoietic system during fetal development has previously been characterized mainly through careful microscopic observations1. Here we reconstruct a phylogenetic tree of blood development using whole-genome sequencing of 511 single-cell-derived haematopoietic colonies from healthy human fetuses at 8 and 18 weeks after conception, coupled with deep targeted sequencing of tissues of known embryonic origin. We found that, in healthy fetuses, individual haematopoietic progenitors acquire tens of somatic mutations by 18 weeks after conception. We used these mutations as barcodes and timed the divergence of embryonic and extra-embryonic tissues during development, and estimated the number of blood antecedents at different stages of embryonic development. Our data support a hypoblast origin of the extra-embryonic mesoderm and primitive blood in humans.


Assuntos
Linhagem da Célula/genética , Desenvolvimento Embrionário/genética , Sistema Hematopoético/embriologia , Sistema Hematopoético/metabolismo , Mutação , Células Sanguíneas/citologia , Células Sanguíneas/metabolismo , Células Clonais/citologia , Células Clonais/metabolismo , Análise Mutacional de DNA , Feto/citologia , Feto/embriologia , Feto/metabolismo , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Saúde , Sistema Hematopoético/citologia , Humanos , Cariotipagem , Masculino , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Taxa de Mutação , Especificidade de Órgãos/genética , Fatores de Tempo , Sequenciamento Completo do Genoma , Fluxo de Trabalho
7.
Nature ; 593(7859): 405-410, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33911282

RESUMO

Somatic mutations drive the development of cancer and may contribute to ageing and other diseases1,2. Despite their importance, the difficulty of detecting mutations that are only present in single cells or small clones has limited our knowledge of somatic mutagenesis to a minority of tissues. Here, to overcome these limitations, we developed nanorate sequencing (NanoSeq), a duplex sequencing protocol with error rates of less than five errors per billion base pairs in single DNA molecules from cell populations. This rate is two orders of magnitude lower than typical somatic mutation loads, enabling the study of somatic mutations in any tissue independently of clonality. We used this single-molecule sensitivity to study somatic mutations in non-dividing cells across several tissues, comparing stem cells to differentiated cells and studying mutagenesis in the absence of cell division. Differentiated cells in blood and colon displayed remarkably similar mutation loads and signatures to their corresponding stem cells, despite mature blood cells having undergone considerably more divisions. We then characterized the mutational landscape of post-mitotic neurons and polyclonal smooth muscle, confirming that neurons accumulate somatic mutations at a constant rate throughout life without cell division, with similar rates to mitotically active tissues. Together, our results suggest that mutational processes that are independent of cell division are important contributors to somatic mutagenesis. We anticipate that the ability to reliably detect mutations in single DNA molecules could transform our understanding of somatic mutagenesis and enable non-invasive studies on large-scale cohorts.


Assuntos
Células Sanguíneas/metabolismo , Diferenciação Celular/genética , Análise Mutacional de DNA/métodos , Músculo Liso/metabolismo , Mutação , Neurônios/metabolismo , Imagem Individual de Molécula/métodos , Células-Tronco/metabolismo , Doença de Alzheimer/genética , Células Sanguíneas/citologia , Divisão Celular , Estudos de Coortes , Colo/citologia , Epitélio/metabolismo , Granulócitos/citologia , Granulócitos/metabolismo , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Liso/citologia , Mutagênese , Taxa de Mutação , Neurônios/citologia , Células-Tronco/citologia
8.
PLoS Biol ; 20(5): e3001289, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35580078

RESUMO

The first animals appear during the late Ediacaran (572 to 541 Ma); an initial diversity increase was followed reduction in diversity, often interpreted as catastrophic mass extinction. We investigate Ediacaran ecosystem structure changes over this time period using the "Elements of Metacommunity Structure" framework to assess whether this diversity reduction in the Nama was likely caused by an external mass extinction, or internal metacommunity restructuring. The oldest metacommunity was characterised by taxa with wide environmental tolerances, and limited specialisation or intertaxa associations. Structuring increased in the second oldest metacommunity, with groups of taxa sharing synchronous responses to environmental gradients, aggregating into distinct communities. This pattern strengthened in the youngest metacommunity, with communities showing strong environmental segregation and depth structure. Thus, metacommunity structure increased in complexity, with increased specialisation and resulting in competitive exclusion, not a catastrophic environmental disaster, leading to diversity loss in the terminal Ediacaran. These results reveal that the complex eco-evolutionary dynamics associated with Cambrian diversification were established in the Ediacaran.


Assuntos
Evolução Biológica , Ecossistema , Animais , Extinção Biológica
9.
Blood ; 139(23): 3387-3401, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35073399

RESUMO

Rare hematopoietic stem and progenitor cell (HSPC) pools outside the bone marrow (BM) contribute to blood production in stress and disease but remain ill-defined. Although nonmobilized peripheral blood (PB) is routinely sampled for clinical management, the diagnosis and monitoring potential of PB HSPCs remain untapped, as no healthy PB HSPC baseline has been reported. Here we comprehensively delineate human extramedullary HSPC compartments comparing spleen, PB, and mobilized PB to BM using single-cell RNA-sequencing and/or functional assays. We uncovered HSPC features shared by extramedullary tissues and others unique to PB. First, in contrast to actively dividing BM HSPCs, we found no evidence of substantial ongoing hematopoiesis in extramedullary tissues at steady state but report increased splenic HSPC proliferative output during stress erythropoiesis. Second, extramedullary hematopoietic stem cells/multipotent progenitors (HSCs/MPPs) from spleen, PB, and mobilized PB share a common transcriptional signature and increased abundance of lineage-primed subsets compared with BM. Third, healthy PB HSPCs display a unique bias toward erythroid-megakaryocytic differentiation. At the HSC/MPP level, this is functionally imparted by a subset of phenotypic CD71+ HSCs/MPPs, exclusively producing erythrocytes and megakaryocytes, highly abundant in PB but rare in other adult tissues. Finally, the unique erythroid-megakaryocytic-skewing of PB is perturbed with age in essential thrombocythemia and ß-thalassemia. Collectively, we identify extramedullary lineage-primed HSPC reservoirs that are nonproliferative in situ and report involvement of splenic HSPCs during demand-adapted hematopoiesis. Our data also establish aberrant composition and function of circulating HSPCs as potential clinical indicators of BM dysfunction.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Adulto , Medula Óssea , Células da Medula Óssea/fisiologia , Eritropoese , Humanos , Megacariócitos
10.
Nanotechnology ; 35(19)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38081077

RESUMO

Critical metals of environmental and economic relevance can be found within complex mixtures, such as mine tailings, electronic waste and wastewater, at trace amounts. Specifically, gold is a critical metal that carries desired redox active properties in various applications, including modern electronics, medicine and chemical catalysis. Here we report the structuring of sub-micron Fe-BTC/PpPDA crystallites into larger 250µm or 500µm granules for continuous packed bed experiments for the precision separation of gold. The Structured Fe-BTC/PpPDA is highly crystalline and porous with a BET surface area of 750 m2g-1. Further, the hybrid nanocomposite material maintains its selectivity for gold ions over common inorganic interferents. The structuring approach reported prevents excessive pressure drop and ensures stability over time and operation in a packed bed column. Further, we demonstrate that the Structured Fe-BTC/PpPDA can concentrate at least 42 wt% of gold under a dynamic continuous flow operation. These findings highlight the potential of Structured Fe-BTC/PpPDA for practical applications in industry, particularly in the selective capture of gold from complex mixtures.

11.
Telemed J E Health ; 30(2): 415-421, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37466483

RESUMO

Objective: The telemedicine expansion (TE) that accompanied the COVID-19 pandemic presents a novel opportunity to increase access to care for rural-residing children with type 1 diabetes (T1D) who may live a great distance from their provider. The study objective was to compare trends in visit frequency among the pediatric T1D population at a single academic center in Oregon before and after TE by those living <100 miles versus ≥100 miles from clinic (MFC) and those residing in urban versus rural areas. Research Design and Methods: We evaluated electronic health record data from 790 children receiving care between July 2018 and December 2021. We estimated differences in likelihood of adequately timed monitoring care (ATMC) over time by patient residence using Generalized Estimating Equations. Results: Just before TE, 37.3% of children were receiving ATMC and those living ≥100 MFC were 20.6% less likely to receive ATMC compared with those living <100 MFC (relative risk [RR] 0.79; confidence interval [95% CI]: 0.57-1.11). Following TE, decreases in ATMC for those living ≥100 MFC were less than for those living <100 MFC (RR of interaction: 1.17; 95% CI: 0.68-2.00). Just before TE, those living in rural areas were as likely to receive ATMC compared with those living in urban areas (RR 1.00; 95% CI: 0.61-1.63). Following TE, decreases in ATMC were greater for those living in rural areas versus urban areas (RR of interaction: 0.79; 95% CI: 0.31-2.01). Conclusions: Between July 2020 and December 2021, the likelihood of ATMC decreased across the entire pediatric T1D population. Decreases in ATMC during this period were more substantial for those living <100 MFC and/or in rural areas, however, these discrepancies were not statistically significant.


Assuntos
Diabetes Mellitus Tipo 1 , Telemedicina , Criança , Humanos , Oregon , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/terapia , Pandemias , Instituições de Assistência Ambulatorial , População Rural
12.
Glob Chang Biol ; 29(1): 10-20, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36220153

RESUMO

The timing of the first appearance of animals is of crucial importance for understanding the evolution of life on Earth. Although the fossil record places the earliest metazoans at 572-602 Ma, molecular clock studies suggest a far earlier origination, as far back as ~850 Ma. The difference in these dates would place the rise of animal life into a time period punctuated by multiple colossal, potentially global, glacial events. Although the two schools of thought debate the limitations of each other's methods, little time has been dedicated to how animal life might have survived if it did arise before or during these global glacial periods. The history of recent polar biota shows that organisms have found ways of persisting on and around the ice of the Antarctic continent throughout the Last Glacial Maximum (33-14 Ka), with some endemic species present before the breakup of Gondwana (180-23 Ma). Here we discuss the survival strategies and habitats of modern polar marine organisms in environments analogous to those that could have existed during Neoproterozoic glaciations. We discuss how, despite the apparent harshness of many ice covered, sub-zero, Antarctic marine habitats, animal life thrives on, in and under the ice. Ice dominated systems and processes make some local environments more habitable through water circulation, oxygenation, terrigenous nutrient input and novel habitats. We consider how the physical conditions of Neoproterozoic glaciations would likely have dramatically impacted conditions for potential life in the shallows and erased any possible fossil evidence from the continental shelves. The recent glacial cycle has driven the evolution of Antarctica's unique fauna by acting as a "diversity pump," and the same could be true for the late Proterozoic and the evolution of animal life on Earth, and the existence of life elsewhere in the universe on icy worlds or moons.


Assuntos
Planeta Terra , Camada de Gelo , Animais , Ecossistema , Fósseis , Regiões Antárticas
14.
Clin Gastroenterol Hepatol ; 20(12): 2684-2695.e3, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35688353

RESUMO

The Gastroparesis Clinical Research Consortium is a multicenter coalition created and funded by the National Institutes of Diabetes and Digestive and Kidney Disorders, with a mission to advance understanding of the pathophysiology of gastroparesis and develop an effective treatment for patients with symptomatic gastroparesis. In this review, we summarize the results of the published Gastroparesis Clinical Research Consortium studies as a ready and convenient resource for gastroenterologists and others to provide a clear understanding of the consortium's experience and perspective on gastroparesis and related disorders.


Assuntos
Gastroparesia , Humanos , Gastroparesia/tratamento farmacológico , Resultado do Tratamento , Esvaziamento Gástrico , Estudos Multicêntricos como Assunto
15.
Biostatistics ; 22(2): 250-265, 2021 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-31373355

RESUMO

Measuring a biomarker in pooled samples from multiple cases or controls can lead to cost-effective estimation of a covariate-adjusted odds ratio, particularly for expensive assays. But pooled measurements may be affected by assay-related measurement error (ME) and/or pooling-related processing error (PE), which can induce bias if ignored. Building on recently developed methods for a normal biomarker subject to additive errors, we present two related estimators for a right-skewed biomarker subject to multiplicative errors: one based on logistic regression and the other based on a Gamma discriminant function model. Applied to a reproductive health dataset with a right-skewed cytokine measured in pools of size 1 and 2, both methods suggest no association with spontaneous abortion. The fitted models indicate little ME but fairly severe PE, the latter of which is much too large to ignore. Simulations mimicking these data with a non-unity odds ratio confirm validity of the estimators and illustrate how PE can detract from pooling-related gains in statistical efficiency. These methods address a key issue associated with the homogeneous pools study design and should facilitate valid odds ratio estimation at a lower cost in a wide range of scenarios.


Assuntos
Projetos de Pesquisa , Viés , Biomarcadores , Feminino , Humanos , Modelos Logísticos , Razão de Chances , Gravidez
16.
Support Care Cancer ; 30(5): 4557-4564, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35119520

RESUMO

PURPOSE: There are over 1.3 million colorectal cancer (CRC) survivors in the USA, many of whom report lower health-related quality of life (HRQoL) years after treatment. This study aimed to explore the effect of digital health tools on HRQoL in CRC survivors. METHODS: We conducted a two-arm, randomized controlled trial of 42 subjects who had completed treatment for CRC. Participants in the intervention arm received a Fitbit Flex™ and daily text messages for 12 weeks. HRQoL was assessed as a secondary endpoint in both arms at enrollment and 12 weeks using the Medical Outcomes Study Short Form Survey (SF-36) and the Functional Assessment of Cancer Therapy-Colorectal (FACT-C). Survey score changes from enrollment to 12 weeks were compared between the two arms using independent t tests, and scores at enrollment and 12 weeks were compared using paired t tests. RESULTS: An increase in the FACT-C functional well-being subscale was observed in individuals in the intervention arm pre- to post-intervention (median difference, 2; interquartile range (IQR), 1, 4; P = .02). Although the between-group comparison was not statistically significant, no change in the functional well-being subscale was observed in the control arm (median difference, 0; IQR, 1, 1; P = .71). No other measures of HRQoL appeared to differ within arm across time points or between arms. CONCLUSION: A 12-week digital physical activity intervention may improve functional well-being among CRC survivors. Larger randomized studies are needed to determine if digital health tools improve functional well-being among CRC survivors and if this improvement can be sustained over time. TRIAL REGISTRATION: NCT02966054; registration date, November 17, 2016.


Assuntos
Neoplasias Colorretais , Envio de Mensagens de Texto , Neoplasias Colorretais/terapia , Monitores de Aptidão Física , Humanos , Projetos Piloto , Qualidade de Vida , Sobreviventes
17.
Vet Pathol ; 59(6): 1031-1046, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36052867

RESUMO

Cases of Theileria-associated mortality are rarely reported in African wild artiodactyls. Descriptions of lesions are limited, particularly in endangered hippotraginids. Here, we analyzed retrospectively the gross and histologic findings in 55 roan antelope (Hippotragus equinus) with fatal natural theileriosis. The most frequently recorded gross findings in 40 cases were widespread petechiae and ecchymoses (72.5%), probable anemia (67.5%), icterus (60%), splenomegaly (60%), hepatomegaly (52.5%), and pulmonary edema (50%). Histologic lesions in 34 cases were characterized by multi-organ infiltrates of parasitized and nonparasitized mononuclear leukocytes (MLs), and fewer multinucleate giant cells (MNGCs). Liver, lung, kidney, adrenal gland, and heart were most consistently infiltrated, followed by spleen and lymph nodes. Leukocytes were phenotyped in lung, liver, kidney, and heart specimens from 16 cases, using immunohistochemistry to detect CD20, CD3, myeloid/histiocyte antigen (MAC387), IBA-1, and CD204 surface receptors. A roan polyclonal anti-Theileria sp. (sable) antibody was applied to the same tissues to identify intraleukocytic parasite antigens. Similar proportions of intravascular and extravascular IBA-1-, CD204-, and MAC387-reactive putative monocyte-macrophages and fewer CD3-positive putative T-lymphocytes were identified in all organs, especially the lungs in infected roan. CD20-positive putative B-lymphocytes were significantly scarcer than in uninfected controls. Intraleukocytic Theileria parasites labeled consistently in affected tissues. Some parasitized and nonparasitized MLs and the MNGCs failed to label with selected leukocyte markers. Fatal theileriosis in roans may largely be the result of multi-organ monocyte-macrophage activation with associated tissue injury and overwhelming systemic inflammation. The identity of the parasitized leukocytes and characteristics of the lymphohistiocytic response require further clarification in roans.


Assuntos
Antílopes , Artiodáctilos , Doenças dos Bovinos , Theileria , Theileriose , Animais , Bovinos , Estudos Retrospectivos , Theileriose/parasitologia
18.
Blood ; 133(13): 1436-1445, 2019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-30728143

RESUMO

Interrogation of hematopoietic tissue at the clonal level has a rich history spanning over 50 years, and has provided critical insights into both normal and malignant hematopoiesis. Characterization of chromosomes identified some of the first genetic links to cancer with the discovery of chromosomal translocations in association with many hematological neoplasms. The unique accessibility of hematopoietic tissue and the ability to clonally expand hematopoietic progenitors in vitro has provided fundamental insights into the cellular hierarchy of normal hematopoiesis, as well as the functional impact of driver mutations in disease. Transplantation assays in murine models have enabled cellular assessment of the functional consequences of somatic mutations in vivo. Most recently, next-generation sequencing-based assays have shown great promise in allowing multi-"omic" characterization of single cells. Here, we review how clonal approaches have advanced our understanding of disease development, focusing on the acquisition of somatic mutations, clonal selection, driver mutation cooperation, and tumor evolution.


Assuntos
Doenças Hematológicas/genética , Hematopoese , Células-Tronco Hematopoéticas/patologia , Mutação , Animais , Carcinogênese/genética , Carcinogênese/patologia , Doenças Hematológicas/patologia , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Células-Tronco Hematopoéticas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
19.
Nature ; 524(7565): 343-6, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26237408

RESUMO

Enigmatic macrofossils of late Ediacaran age (580-541 million years ago) provide the oldest known record of diverse complex organisms on Earth, lying between the microbially dominated ecosystems of the Proterozoic and the Cambrian emergence of the modern biosphere. Among the oldest and most enigmatic of these macrofossils are the Rangeomorpha, a group characterized by modular, self-similar branching and a sessile benthic habit. Localized occurrences of large in situ fossilized rangeomorph populations allow fundamental aspects of their biology to be resolved using spatial point process techniques. Here we use such techniques to identify recurrent clustering patterns in the rangeomorph Fractofusus, revealing a complex life history of multigenerational, stolon-like asexual reproduction, interspersed with dispersal by waterborne propagules. Ecologically, such a habit would have allowed both for the rapid colonization of a localized area and for transport to new, previously uncolonized areas. The capacity of Fractofusus to derive adult morphology by two distinct reproductive modes documents the sophistication of its underlying developmental biology.


Assuntos
Organismos Aquáticos/fisiologia , Fósseis , Reprodução Assexuada , Terra Nova e Labrador , Filogenia
20.
Vet Pathol ; 58(6): 1142-1146, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34318735

RESUMO

Pemphigus foliaceus (PF) is an autoimmune acantholytic skin disease described in humans, dogs, cats, horses, goats, and sheep. From 2003 to 2016, six Arabian oryx (Oryx leucoryx) at the National Zoological Garden in Pretoria, South Africa, developed progressive, bilaterally symmetrical, hyperkeratotic skin lesions and pustules consistent with PF. Lesions were similar to those observed in domestic animals and primarily affected the pinnae, face and nasal planum, distal legs, and tail tip. Histological evaluation of suspect PF skin lesions in affected animals, evaluation of medical records for treatments received, causative agents in the diet and environment, and special stains for infectious organisms yielded no consistent inciting cause. The Arabian oryx is a species highly adapted to arid environments of the desert and has recently survived from a severe genetic bottleneck; both of these factors may have contributed to the development of PF in these animals.


Assuntos
Antílopes , Pênfigo , Animais , Pênfigo/diagnóstico , Pênfigo/veterinária , África do Sul/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA