Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Eukaryot Microbiol ; 69(2): e12875, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34726818

RESUMO

This study provides a morphological, ultrastructural, and phylogenetic characterization of a novel micro-eukaryotic parasite (2.3-2.6 µm) infecting amphipod genera Echinogammarus and Orchestia. Longitudinal studies across two years revealed that infection prevalence peaked in late April and May, reaching 64% in Echinogammarus sp. and 15% in Orchestia sp., but was seldom detected during the rest of the year. The parasite infected predominantly hemolymph, connective tissue, tegument, and gonad, although hepatopancreas and nervous tissue were affected in heavier infections, eliciting melanization and granuloma formation. Cell division occurred inside walled parasitic cysts, often within host hemocytes, resulting in hemolymph congestion. Small subunit (18S) rRNA gene phylogenies including related environmental sequences placed the novel parasite as a highly divergent lineage within Class Filasterea, which together with Choanoflagellatea represent the closest protistan relatives of Metazoa. We describe the new parasite as Txikispora philomaios n. sp. n. g., the first confirmed parasitic filasterean lineage, which otherwise comprises four free-living flagellates and a rarely observed endosymbiont of snails. Lineage-specific PCR probing of other hosts and surrounding environments only detected T. philomaios in the platyhelminth Procerodes sp. We expand the known diversity of Filasterea by targeted searches of metagenomic datasets, resulting in 13 previously unknown lineages from environmental samples.


Assuntos
Anfípodes , Anfípodes/parasitologia , Animais , Eucariotos , Células Eucarióticas , Filogenia , Reação em Cadeia da Polimerase
2.
Biol Lett ; 15(9): 20190182, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31506037

RESUMO

Understanding biological diversity is crucial for ecological and evolutionary studies. Even though a great part of animal diversity has already been documented, both morphological surveys and metabarcoding analyses have previously shown that some animal groups, such as Platyhelminthes, may harbour hidden diversity. To better understand the molecular diversity of Platyhelminthes, one of the most diverse and biomedically important animal phyla, we here combined data from six marine and two freshwater metabarcoding expeditions that cover a broad variety of aquatic habitats and analysed the data by phylogenetic placement. Our results show that a great part of the hidden diversity is located in early-branching clades such as Catenulida and Macrostomorpha, as well as in late-diverging clades such as Proseriata and Rhabdocoela. We also report the first freshwater record of Gnosonesimida, a group previously thought to be exclusively marine. Finally, we identified two putative novel freshwater Platyhelminthes clades that branch between well-defined orders of the phylum. Thus, our analyses of several environmental datasets confirm that a large part of the diversity of Platyhelminthes remains undiscovered, point to groups with more potential novel species and identify freshwater environments as potential reservoirs for novel species of flatworms.


Assuntos
Platelmintos , Animais , Biodiversidade , Evolução Biológica , Água Doce , Filogenia
3.
Sci Rep ; 13(1): 3119, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36813945

RESUMO

Microbial eukaryotes are diverse and ecologically important organisms, yet sampling constraints have hindered the understanding of their distribution and diversity in freshwater ecosystems. Metabarcoding has provided a powerful complement to traditional limnological studies, revealing an unprecedented diversity of protists in freshwater environments. Here, we aim to expand our knowledge of the ecology and diversity of protists in lacustrine ecosystems by targeting the V4 hypervariable region of the 18S rRNA gene in water column, sediment and biofilm samples collected from Sanabria Lake (Spain) and surrounding freshwater ecosystems. Sanabria is a temperate lake, which are relatively understudied by metabarcoding in comparison to alpine and polar lakes. The phylogenetic diversity of microbial eukaryotes detected in Sanabria spans all currently recognized eukaryotic supergroups, with Stramenopiles being the most abundant and diverse supergroup in all sampling sites. Parasitic microeukaryotes account for 21% of the total protist ASVs identified in our study and were dominated by Chytridiomycota, both in terms of richness and abundance, in all sampling sites. Sediments, biofilms and water column samples harbour distinct microbial communities. Phylogenetic placement of poorly assigned and abundant ASVs indicates molecular novelty inside Rhodophyta, Bigyra, early-branching Nucletmycea and Apusomonadida. In addition, we report the first freshwater incidence of the previously exclusively marine genera Abeoforma and Sphaeroforma. Our results contribute to a deeper understanding of microeukaryotic communities in freshwater ecosystems, and provide the first molecular reference for future biomonitoring surveys in Sanabria Lake.


Assuntos
Microbiota , Estramenópilas , Lagos , Filogenia , Água
4.
FEMS Microbiol Ecol ; 94(2)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29294010

RESUMO

Compositional variation of the gut microbiota across host allopatric populations can reflect both adaptation and stochasticity since the time of separation. Major factors shaping this variation include the host phylogeographic and demographic history, the microbiota inheritance, environmental inputs and dispersal of bacteria. Here we explored the impact of these factors in driving gut community diversity in seven allopatric populations of the omnivorous lizard Podarcis lilfordi from the Menorcan coastal islets, all descending from an ancestral mainland population. Using 16S rRNA Illumina sequencing, we showed that 'islet' and 'age' (time since islet separation from mainland) were the only significant variables in microbial community clustering, suggesting a partial islet-restricted diversification following these lizards phylogeography. Despite a significant variation, islets/populations were characterized by a remarkably low bacterial uniqueness (2.4% of total OTUs) and a minor differential enrichment of taxa, indicating a negligible impact of local inputs and important host common constraints. Overall, the extant pattern of similarity/dissimilarity among islets is compatible with partial retention of the ancestral mainland microbial pool, with differences among islets potentially explained by a differential loss of bacteria following population fragmentation and bottlenecks (i.e. ecological drift). While more quantitative data are needed to validate this hypothesis, this study unveils the importance of considering both neutral and niche-driven processes in driving contemporary patterns of gut metacommunity diversity.


Assuntos
Bactérias/química , Bactérias/genética , Microbioma Gastrointestinal/genética , Lagartos/microbiologia , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Feminino , Deriva Genética , Variação Genética , Geografia , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Filogenia , Filogeografia , RNA Ribossômico 16S/genética , Isolamento Reprodutivo , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA