Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 151(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38265146

RESUMO

Lysosomes are intracellular organelles responsible for degrading diverse macromolecules delivered from several pathways, including the endo-lysosomal and autophagic pathways. Recent reports have suggested that lysosomes are essential for regulating neural stem cells in developing, adult and aged brains. However, the activity of these lysosomes has yet to be monitored in these brain tissues. Here, we report the development of a new probe to measure lysosomal protein degradation in brain tissue by immunostaining. Our results indicate that lysosomal protein degradation fluctuates in neural stem cells of the hippocampal dentate gyrus, depending on age and brain disorders. Neural stem cells increase their lysosomal activity during hippocampal development in the dentate gyrus, but aging and aging-related disease reduce lysosomal activity. In addition, physical exercise increases lysosomal activity in neural stem cells and astrocytes in the dentate gyrus. We therefore propose that three different stages of lysosomal activity exist: the state of increase during development, the stable state during adulthood and the state of reduction due to damage caused by either age or disease.


Assuntos
Giro Denteado , Células-Tronco Neurais , Animais , Camundongos , Giro Denteado/metabolismo , Proteólise , Células-Tronco Neurais/metabolismo , Astrócitos/metabolismo , Lisossomos/metabolismo
2.
Immunity ; 48(2): 286-298.e6, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29396162

RESUMO

Glucocorticoids are steroid hormones with strong anti-inflammatory and immunosuppressive effects that are produced in a diurnal fashion. Although glucocorticoids have the potential to induce interleukin-7 receptor (IL-7R) expression in T cells, whether they control T cell homeostasis and responses at physiological concentrations remains unclear. We found that glucocorticoid receptor signaling induces IL-7R expression in mouse T cells by binding to an enhancer of the IL-7Rα locus, with a peak at midnight and a trough at midday. This diurnal induction of IL-7R supported the survival of T cells and their redistribution between lymph nodes, spleen, and blood by controlling expression of the chemokine receptor CXCR4. In mice, T cell accumulation in the spleen at night enhanced immune responses against soluble antigens and systemic bacterial infection. Our results reveal the immunoenhancing role of glucocorticoids in adaptive immunity and provide insight into how immune function is regulated by the diurnal rhythm.


Assuntos
Ritmo Circadiano/fisiologia , Glucocorticoides/farmacologia , Receptores CXCR4/fisiologia , Receptores de Interleucina-7/fisiologia , Linfócitos T/imunologia , Animais , Células Cultivadas , Quimiocina CXCL12/biossíntese , Feminino , Memória Imunológica , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Glucocorticoides/fisiologia
3.
Genes Dev ; 30(1): 102-16, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26728556

RESUMO

Notch signaling regulates tissue morphogenesis through cell-cell interactions. The Notch effectors Hes1 and Hes7 are expressed in an oscillatory manner and regulate developmental processes such as neurogenesis and somitogenesis, respectively. Expression of the mRNA for the mouse Notch ligand Delta-like1 (Dll1) is also oscillatory. However, the dynamics of Dll1 protein expression are controversial, and their functional significance is unknown. Here, we developed a live-imaging system and found that Dll1 protein expression oscillated in neural progenitors and presomitic mesoderm cells. Notably, when Dll1 expression was accelerated or delayed by shortening or elongating the Dll1 gene, Dll1 oscillations became severely dampened or quenched at intermediate levels, as modeled mathematically. Under this condition, Hes1 and Hes7 oscillations were also dampened. In the presomitic mesoderm, steady Dll1 expression led to severe fusion of somites and their derivatives, such as vertebrae and ribs. In the developing brain, steady Dll1 expression inhibited proliferation of neural progenitors and accelerated neurogenesis, whereas optogenetic induction of Dll1 oscillation efficiently maintained neural progenitors. These results indicate that the appropriate timing of Dll1 expression is critical for the oscillatory networks and suggest the functional significance of oscillatory cell-cell interactions in tissue morphogenesis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Morfogênese/fisiologia , Neurônios/metabolismo , Células-Tronco/metabolismo , Animais , Proteínas de Ligação ao Cálcio , Comunicação Celular , Proliferação de Células , Células Cultivadas , Técnicas de Introdução de Genes , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Modelos Biológicos , Mutação , Neurogênese/genética , Neurônios/citologia , Receptores Notch/genética , Transdução de Sinais/genética , Somitos/embriologia , Células-Tronco/citologia , Imagem com Lapso de Tempo
4.
Development ; 147(4)2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32094111

RESUMO

The expression of the transcriptional repressor Hes1 oscillates in many cell types, including neural progenitor cells (NPCs), but the significance of Hes1 oscillations in development is not fully understood. To examine the effect of altered oscillatory dynamics of Hes1, we generated two types of Hes1 knock-in mice, a shortened (type-1) and an elongated (type-2) Hes1 gene, and examined their phenotypes focusing on neural development. Although both mutations affected Hes1 oscillations, the type-1 mutation dampened Hes1 oscillations more severely, resulting in much lower amplitudes. The average levels of Hes1 expression in type-1 mutant NPCs were also lower than in wild-type NPCs but similar to or slightly higher than those in Hes1 heterozygous mutant mice, which exhibit no apparent defects. Whereas type-2 mutant mice were apparently normal, type-1 mutant mice displayed smaller brains than wild-type mice and upregulated proneural gene expression. Furthermore, proliferation of NPCs decreased and cell death increased in type-1 mutant embryos. When Hes3 and Hes5 were additionally deleted, neuronal differentiation was also accelerated, leading to microcephaly. Thus, robust Hes1 oscillations are required for maintenance and proliferation of NPCs and the normal timing of neurogenesis, thereby regulating brain morphogenesis.


Assuntos
Encéfalo/embriologia , Neurônios/fisiologia , Oscilometria , Fatores de Transcrição HES-1/fisiologia , Animais , Morte Celular , Diferenciação Celular , Proliferação de Células , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Homozigoto , Processamento de Imagem Assistida por Computador , Íntrons , Masculino , Camundongos , Modelos Teóricos , Mutação , Células-Tronco Neurais/citologia , Neurogênese
5.
J Immunol ; 204(10): 2671-2684, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32238459

RESUMO

TCR signaling is required for homeostasis of naive αß T cells. However, whether such a signal is necessary for γδ T cell homeostasis in the periphery remains unknown. In this study, we present evidence that a portion of Vγ2+ γδ T cells, one of the major γδ T cell subsets in the secondary lymphoid organs, requires TCR signaling for homeostasis. To attenuate γδTCR signals, we generated mice lacking Eγ4 (Eγ4-/-), an enhancer located at the 3'-most end of the TCRγ locus. Overall, we found that in thymus, Eγ4 loss altered V-J rearrangement, chromatin accessibility, and transcription of the TCRγ locus in a distance-dependent manner. Vγ2+ γδ T cells in Eγ4-/- mice developed normally both fetal and adult mouse thymi but were relatively reduced in number in spleen and lymph nodes. Although Vγ2 TCR transcription decreased in all subpopulations of Eγ4-/- mice, the number of Vγ2+ γδ T cells decreased and TCR signaling was attenuated only in the innate-like CD27+CD45RBhigh subpopulation in peripheral lymphoid organs. Consistently, CD27+CD45RBhigh Vγ2+ γδ T cells from Eγ4-/- mice transferred into Rag2-deficient mice were not efficiently recovered, suggesting that continuous TCR signaling is required for their homeostasis. Finally, CD27+CD45RBhigh Vγ2+ γδ T cells from Eγ4-/- mice showed impaired TCR-induced activation and antitumor responses. These results suggest that normal homeostasis of innate-like CD27+CD45RBhigh Vγ2+ γδ T cells in peripheral lymphoid organs requires TCR signaling.


Assuntos
Centro Germinativo/imunologia , Linfonodos/imunologia , Tecido Linfoide/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subpopulações de Linfócitos T/imunologia , Linfócitos T/imunologia , Animais , Células Cultivadas , Elementos Facilitadores Genéticos/genética , Homeostase , Imunidade Inata , Antígenos Comuns de Leucócito/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tolerância Periférica , Receptores de Antígenos de Linfócitos T gama-delta/genética , Transdução de Sinais , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
6.
J Immunol ; 204(4): 844-857, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31924648

RESUMO

T cell development and homeostasis requires IL-7R α-chain (IL-7Rα) signaling. Tyrosine Y449 of the IL-7Rα is essential to activate STAT5 and PI3K, whereas PI3K recruitment requires IL-7Rα methionine M452. How IL-7Rα activates and regulates both signaling pathways differentially remains unclear. To characterize differential signaling, we established two lines of IL-7Rα mutant mice: IL-7R-Y449F mice and IL-7R-M452L mice. IL-7R-Y449F mice showed decreased PI3K and STAT5 signals, whereas IL-7R-M452L mice showed decreased PI3K but significantly increased STAT5 signaling, owing to a competition between PI3K and STAT5 signaling through Y449 of IL-7Rα. The number of T, B, and mature innate lymphoid cells were markedly reduced in IL-7R-Y449F mice, whereas IL-7R-M452L mice showed impaired early T cell development and memory precursor effector T cell maintenance with the downregulation of transcription factor T cell factor-1. Peripheral T cell numbers increased in IL-7R-M452L mice with enhanced survival and homeostatic proliferation. Furthermore, although wild type and IL-7R-Y449F mice showed comparable Th1/Th2 differentiation, IL-7R-M452L mice exhibited impaired Th17 differentiation. We conclude that PI3K competes with STAT5 under IL-7Rα and maintains an appropriate signal balance for modulating T cell development and homeostasis. To our knowledge, this study provides a new insight into complex regulation of IL-7Rα signaling, which supports immune development and responses.


Assuntos
Homeostase/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Receptores de Interleucina-7/imunologia , Fator de Transcrição STAT5/imunologia , Linfócitos T/imunologia , Animais , Diferenciação Celular/imunologia , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Interleucina-7/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/imunologia
7.
Int J Dent Hyg ; 20(4): 658-663, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35920084

RESUMO

OBJECTIVE: This study aimed to elucidate the oral hygiene status and the factors associated with poor oral hygiene among patients with schizophrenia. METHODS: The relationships of oral hygiene status (calculus index [CI], debris index [DI]), the mean number of decayed-missing-filled teeth (mean DMFT), and Revised Oral Assessment Guide (ROAG) with related factors (hospitalization, chlorpromazine equivalents [CPZE], age, Barthel Index [BI], frequency of cleaning teeth, and self-oral hygiene ability) among 249 hospitalized schizophrenic patients were investigated. RESULTS: The results for oral hygiene status were as follows: median (range); CI 0.5 (0-6.0), DI 1.7 (0-6.0), ROAG 10.0 (7.0-15.0); and mean DMFT 21.7 ± 7.3. The average CPZE was 524.4 ± 353.6 mg (mean ± SD), and the BI was 76.4 ± 30.7. There was a negative correlation between BI and DI (r = -0.34), and a positive correlation between age and mean DMFT (r = 0.57). Male patients tended to have worse oral conditions (ROAG) than females. The least-squares multiple regression analysis revealed that BI for DI, age for mean DMFT, sex for ROAG, and self-oral hygiene ability for CI, DI, and mean DMFT were factors related to oral health status. CONCLUSION: Patients with schizophrenia tended to have poor oral hygiene. BI, being male, and low activities of daily living were associated with poor oral hygiene. Furthermore, advanced age was associated with an increased risk of dental caries.


Assuntos
Cárie Dentária , Esquizofrenia , Perda de Dente , Feminino , Humanos , Masculino , Saúde Bucal , Higiene Bucal , Índice CPO , Cárie Dentária/etiologia , Cárie Dentária/complicações , Esquizofrenia/complicações , Clorpromazina , Atividades Cotidianas , Prevalência
8.
PLoS Genet ; 13(9): e1007034, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28949961

RESUMO

Histone H3 lysine 9 (H3K9) methylation is a hallmark of heterochromatin. H3K9 demethylation is crucial in mouse sex determination; The H3K9 demethylase Jmjd1a deficiency leads to increased H3K9 methylation at the Sry locus in embryonic gonads, thereby compromising Sry expression and causing male-to-female sex reversal. We hypothesized that the H3K9 methylation level at the Sry locus is finely tuned by the balance in activities between the H3K9 demethylase Jmjd1a and an unidentified H3K9 methyltransferase to ensure correct Sry expression. Here we identified the GLP/G9a H3K9 methyltransferase complex as the enzyme catalyzing H3K9 methylation at the Sry locus. Based on this finding, we tried to rescue the sex-reversal phenotype of Jmjd1a-deficient mice by modulating GLP/G9a complex activity. A heterozygous GLP mutation rescued the sex-reversal phenotype of Jmjd1a-deficient mice by restoring Sry expression. The administration of a chemical inhibitor of GLP/G9a enzyme into Jmjd1a-deficient embryos also successfully rescued sex reversal. Our study not only reveals the molecular mechanism underlying the tuning of Sry expression but also provides proof on the principle of therapeutic strategies based on the pharmacological modulation of epigenetic balance.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Proteína da Região Y Determinante do Sexo/metabolismo , Desenvolvimento Sexual/genética , Animais , Feminino , Regulação da Expressão Gênica , Loci Gênicos , Gônadas/embriologia , Gônadas/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Histona Desmetilases com o Domínio Jumonji/deficiência , Histona Desmetilases com o Domínio Jumonji/metabolismo , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Análise de Sequência de DNA , Proteína da Região Y Determinante do Sexo/genética
9.
Odontology ; 108(1): 117-123, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31037446

RESUMO

Dysphagia prevalence has increased with increasing elderly population worldwide. Therefore, early detection of dysphagia has become increasingly important. Repetitive saliva swallowing test (RSST), modified water swallowing test (MWST), and cervical auscultation, which are convenient for non-experts to assess eating and swallowing and have been frequently used in Japan since 20 years. Using aspiration and pharyngeal residues, the objective of this study was to elucidate the efficacy of the three screening tests performed by non-experts in patients who had swallowing disorders. In total, 102 patients with cerebrovascular diseases who were suspected of having dysphagia were assessed. A swallowing team assessed their swallowing capabilities; videofluoroscopy and screening tests were performed. RSST, MWST, and cervical auscultation were performed by junior dentists who were non-experts in dysphagia. Sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, and negative likelihood ratio in each examination were evaluated using results of aspiration in videofluoroscopy and pharyngeal residues. For aspiration, the highest sensitivity with cervical auscultation (VES) was 93.7%. For pharyngeal residue, the highest sensitivity with cervical auscultation (VES) was 84.3%. For piriform sinus residue, the highest sensitivity with cervical auscultation (VES) was 86.4%. Despite being evaluated by a non-expert, the sensitivity of cervical auscultation (VES) and MWST was ≥ 80%, suggesting their effectiveness as prescreening tests, although the range of specificity was 25.5-68.4% in all examinations. These tests are easy to perform and useful to screen for aspiration or pharyngeal residues before precision tests.


Assuntos
Transtornos Cerebrovasculares , Transtornos de Deglutição , Idoso , Deglutição , Humanos , Japão , Sensibilidade e Especificidade
10.
Genes Cells ; 23(7): 580-589, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29749672

RESUMO

Jellyfish green fluorescent protein (GFP) and firefly luciferase can serve as versatile tracking markers for identification and quantification of transplanted cancer cells in vivo. However, immune reactions against these markers can hamper the formation of syngraft tumors and metastasis that follows. Here, we report two transgenic (Tg) mouse lines that express nonfunctional mutant marker proteins, namely modified firefly luciferase (Luc2) or enhanced GFP (EGFP). These mice, named as Tg-mLuc2 and Tg-mEGFP, turned out to be immunologically tolerant to the respective tracking markers and thus efficiently accepted syngeneic cancer cells expressing the active forms of the markers. We then injected intrarectally the F1 hybrid Tg mice (BALB/c × C57BL/6J) with Colon-26 (C26) colon cancer cells that originated from a BALB/c mouse. Even when C26 cells expressed active Luc2 or EGFP, they formed primary tumors in the Tg mice with only 104 cells per mouse compared with more than 106 cells required in the nontransgenic BALB/c hosts. Furthermore, we detected metastatic foci of C26 cells in the liver and lungs of the Tg mice by tracking the specific reporter activities. These results show the usefulness of the Tg mouse lines as recipients for transplantation experiments with the non-self tracking marker-expressing cells.


Assuntos
Isoenxertos/metabolismo , Transplante de Neoplasias/métodos , Animais , Proteínas de Fluorescência Verde , Luciferases , Proteínas Luminescentes , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos/fisiologia , Neoplasias
11.
Genes Dev ; 25(11): 1115-20, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21632822

RESUMO

Somitogenesis is controlled by cyclic genes such as Notch effectors and by the wave front established by morphogens such as Fgf8, but the precise mechanism of how these factors are coordinated remains to be determined. Here, we show that effectors of Notch and Fgf pathways oscillate in different dynamics and that oscillations in Notch signaling generate alternating phase shift, thereby periodically segregating a group of synchronized cells, whereas oscillations in Fgf signaling released these synchronized cells for somitogenesis at the same time. These results suggest that Notch oscillators define the prospective somite region, while Fgf oscillators regulate the pace of segmentation.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Somitos/citologia , Somitos/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Linhagem Celular , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Periodicidade , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
12.
Biochem Cell Biol ; 96(4): 483-489, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29156143

RESUMO

MSX1 is one of the homeoproteins with the homeodomain (HD) sequence, which regulates proliferation and differentiation of mesenchymal cells. In this study, we investigated the nuclear localization signal (NLS) in the MSX1 HD by deletion and amino acid substitution analyses. The web-based tool NLStradamus predicted 2 putative basic motifs in the N- and C-termini of the MSX1 HD. Green fluorescent protein (GFP) chimera studies revealed that NLS1 (161RKHKTNRKPR170) and NLS2 (216NRRAKAKR223) were independently insufficient for robust nuclear localization. However, they can work cooperatively to promote nuclear localization of MSX1, as was shown by the 2 tandem NLS motifs partially restoring functional NLS, leading to a significant nuclear accumulation of the GFP chimera. These results demonstrate a unique NLS motif in MSX1, which consists of an essential single core motif in helix-I, with weak potency, and an auxiliary subdomain in helix-III, which alone does not have nuclear localization potency. Additionally, other peptide sequences, other than predicted 2 motifs in the spacer, may be necessary for complete nuclear localization in MSX1 HD.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Homeodomínio/metabolismo , Fator de Transcrição MSX1/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Linhagem Celular , Proteínas de Homeodomínio/genética , Humanos , Sinais de Localização Nuclear/metabolismo
13.
J Immunol ; 195(10): 4641-9, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26453754

RESUMO

Cortical thymic epithelial cells (cTECs) and medullary thymic epithelial cells (mTECs) play essential roles in the positive and negative selection of developing thymocytes, respectively. Aire in mTECs plays an essential role in the latter process through expression of broad arrays of tissue-restricted Ags. To determine whether the location of Aire within the medulla is absolutely essential or whether Aire could also function within the cortex for establishment of self-tolerance, we used bacterial artificial chromosome technology to establish a semiknockin strain of NOD-background (ß5t/Aire-transgenic) mice expressing Aire under control of the promoter of ß5t, a thymoproteasome expressed exclusively in the cortex. Although Aire was expressed in cTECs as typical nuclear dot protein in ß5t/Aire-Tg mice, cTECs expressing Aire ectopically did not confer transcriptional expression of either Aire-dependent or Aire-independent tissue-restricted Ag genes. We then crossed ß5t/Aire-Tg mice with Aire-deficient NOD mice, generating a strain in which Aire expression was confined to cTECs. Despite the presence of Aire(+) cTECs, these mice succumbed to autoimmunity, as did Aire-deficient NOD mice. The thymic microenvironment harboring Aire(+) cTECs, within which many Aire-activated genes were present, also showed no obvious alteration of positive selection, suggesting that Aire's unique property of generating a self-tolerant T cell repertoire is functional only in mTECs.


Assuntos
Autoimunidade/genética , Tolerância a Antígenos Próprios/genética , Timócitos/imunologia , Timo/imunologia , Fatores de Transcrição/genética , Animais , Autoimunidade/imunologia , Diferenciação Celular/imunologia , Cromossomos Artificiais Bacterianos/genética , Células Epiteliais/citologia , Células Epiteliais/imunologia , Técnicas de Introdução de Genes , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Tolerância a Antígenos Próprios/imunologia , Linfócitos T/imunologia , Timócitos/citologia , Timo/citologia , Fatores de Transcrição/metabolismo , Proteína AIRE
14.
J Immunol ; 195(7): 3129-38, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26336149

RESUMO

The IL-7R plays critical roles in lymphocyte development and homeostasis. Although IL-7R expression is strictly regulated during lymphocyte differentiation and the immune response, little is known regarding its in vivo regulation. To address this issue, we established a mouse line with targeted deletion of the conserved non-coding sequence 1 (CNS1) element found 3.6 kb upstream of the IL-7Rα promoter. We report that IL-7Rα is expressed normally on T and B cells in thymus and bone marrow of CNS1(-/-) mice except for in regulatory T cells. In contrast, these mice show reduced IL-7Rα expression in conventional CD4 and CD8 T cells as well as regulatory T, NKT, and γδ T cells in the periphery. CD4 T cells of CNS1(-/-) mice showed IL-7Rα upregulation in the absence of growth factors and IL-7Rα downregulation by IL-7 or TCR stimulation, although the expression levels were lower than those in control mice. Naive CD4 and CD8 T cells of CNS1(-/-) mice show attenuated survival by culture with IL-7 and reduced homeostatic proliferation after transfer into lymphopenic hosts. CNS1(-/-) mice exhibit impaired maintenance of Ag-stimulated T cells. Furthermore, IL-7Rα upregulation by glucocorticoids and TNF-α was abrogated in CNS1(-/-) mice. This work demonstrates that the CNS1 element controls IL-7Rα expression and maintenance of peripheral T cells, suggesting differential regulation of IL-7Rα expression between central and peripheral lymphoid organs.


Assuntos
Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Elementos Facilitadores Genéticos , Subunidade alfa de Receptor de Interleucina-7/genética , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Proliferação de Células/genética , Células Cultivadas , Dexametasona/farmacologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Subunidade alfa de Receptor de Interleucina-7/biossíntese , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Deleção de Sequência/genética , Transdução de Sinais/imunologia , Transcrição Gênica/genética , Fator de Necrose Tumoral alfa/farmacologia
15.
J Immunol ; 195(4): 1804-14, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26195811

RESUMO

The transcription factor STAT5, which is activated by IL-7R, controls chromatin accessibility and rearrangements of the TCRγ locus. Although STAT-binding motifs are conserved in Jγ promoters and Eγ enhancers, little is known about their precise roles in rearrangements of the TCRγ locus in vivo. To address this question, we established two lines of Jγ1 promoter mutant mice: one harboring a deletion in the Jγ1 promoter, including three STAT motifs (Jγ1P(Δ/Δ)), and the other carrying point mutations in the three STAT motifs in that promoter (Jγ1P(mS/mS)). Both Jγ1P(Δ/Δ) and Jγ1P(mS/mS) mice showed impaired recruitment of STAT5 and chromatin remodeling factor BRG1 at the Jγ1 gene segment. This resulted in severe and specific reduction in germline transcription, histone H3 acetylation, and histone H4 lysine 4 methylation of the Jγ1 gene segment in adult thymus. Rearrangement and DNA cleavage of the segment were severely diminished, and Jγ1 promoter mutant mice showed profoundly decreased numbers of γδ T cells of γ1 cluster origin. Finally, compared with controls, both mutant mice showed a severe reduction in rearrangements of the Jγ1 gene segment, perturbed development of γδ T cells of γ1 cluster origin in fetal thymus, and fewer Vγ3(+) dendritic epidermal T cells. Furthermore, interaction with the Jγ1 promoter and Eγ1, a TCRγ enhancer, was dependent on STAT motifs in the Jγ1 promoter. Overall, this study strongly suggests that direct binding of STAT5 to STAT motifs in the Jγ promoter is essential for local chromatin accessibility and Jγ/Eγ chromatin interaction, triggering rearrangements of the TCRγ locus.


Assuntos
Montagem e Desmontagem da Cromatina , Epigênese Genética , Rearranjo Gênico , Loci Gênicos , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Fator de Transcrição STAT5/metabolismo , Acetilação , Animais , Clivagem do DNA , Elementos Facilitadores Genéticos , Células Germinativas/metabolismo , Histonas/metabolismo , Metilação , Camundongos , Mutação , Regiões Promotoras Genéticas , Ligação Proteica , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Timo/metabolismo , Transcrição Gênica
16.
Proc Natl Acad Sci U S A ; 111(5): 1915-20, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24449915

RESUMO

IL-15 is a cytokine critical for development, maintenance, and response of T cells, natural killer (NK) cells, NK T cells, and dendritic cells. However, the identity and distribution of IL-15-expressing cells in lymphoid organs are not well understood. To address these questions, we established and analyzed IL-15-CFP knock-in mice. We found that IL-15 was highly expressed in thymic medulla, and medullary thymic epithelial cells with high MHC class II expression were the major source of IL-15. In bone marrow, IL-15 was detected primarily in VCAM-1(+)PDGFRß(+)CD31(-)Sca-1(-) stromal cells, which corresponded to previously described CXCL12-abundant reticular cells. In lymph nodes, IL-15-expressing cells were mainly distributed in the T-cell zone and medulla. IL-15 was expressed in some fibroblastic reticular cells and gp38(-)CD31(-) double-negative stromal cells in the T-cell zone. Blood endothelial cells, including all high endothelial venules, also expressed high IL-15 levels in lymph nodes, whereas lymphatic endothelial cells (LECs) lacked IL-15 expression. In spleen, IL-15 was expressed in VCAM-1(+) stromal cells, where its expression increased as mice aged. Finally, IL-15 expression in blood and LECs of peripheral lymphoid organs significantly increased in LPS-induced inflammation. Overall, we have identified and characterized several IL-15-expressing cells in primary and secondary lymphoid organs, providing a unique perspective of IL-15 niche in immune microenvironment. This study also suggests that some stromal cells express IL-7 and IL-15 differentially and suggests a way to functionally classify different stromal cell subsets.


Assuntos
Interleucina-15/metabolismo , Tecido Linfoide/metabolismo , Envelhecimento/imunologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Técnicas de Introdução de Genes , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Linfonodos/citologia , Linfonodos/efeitos dos fármacos , Linfonodos/metabolismo , Tecido Linfoide/citologia , Tecido Linfoide/efeitos dos fármacos , Mesoderma/citologia , Mesoderma/efeitos dos fármacos , Camundongos , Mucosa/citologia , Mucosa/efeitos dos fármacos , Mucosa/metabolismo , Baço/citologia , Baço/crescimento & desenvolvimento , Baço/metabolismo , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Timo/citologia , Timo/efeitos dos fármacos , Timo/metabolismo
17.
Genes Cells ; 20(9): 758-70, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26283595

RESUMO

Upper-layer (UL) neocortical neurons are the most prominent distinguishing features of the mammalian neocortex compared with those of the avian dorsal cortex and are vastly expanded in primates. However, little is known about the identities of the genes that control the specification of UL neurons. Here, we found that Prdm8, a member of the PR (PRDI-BF1 and RIZ homology) domain protein family, was specifically expressed in the postnatal UL neocortex, particular those in late-born RORß-positive layer IV neurons. We generated homozygous Prdm8 knockout (Prdm8 KO) mice and found that the deletion of Prdm8 causes growth retardation and a reduced brain weight, although the brain weight-to-body weight ratio is unchanged at postnatal day 8 (P8). Immunohistochemistry showed that the relative UL thickness, but not the thickness of the deep layer (DL), was significantly reduced in Prdm8 KO mice compared with wild-type (WT) mice. In addition, we found that a number of late-born Brn2-positive UL neurons were significantly decreased in Prdm8 KO mice. To identify genes regulated by Prdm8 during neocortical development, we compared expression profiling analysis in Prdm8 KO and WT mice, and identified some candidate genes. These results suggest that the proper expression of Prdm8 is required for the normal development and construction of UL neurons in the mammalian neocortex.


Assuntos
Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Neocórtex/crescimento & desenvolvimento , Neurônios/metabolismo , Animais , Proteínas de Ligação a DNA , Deleção de Genes , Histona Metiltransferases , Camundongos , Camundongos Knockout , Neocórtex/citologia , Neurônios/citologia
18.
Mutagenesis ; 31(1): 61-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26220009

RESUMO

Cleidocranial dysplasia (CCD; MIM 119600) is an autosomal dominant skeletal dysplasia characterised by hypopalstic and/or aplastic clavicles, midface hypoplasia, absent or delayed closure of cranial sutures, moderately short stature, delayed eruption of permanent dentition and supernumerary teeth. The molecular pathogenesis can be explained in about two-thirds of CCD patients by haploinsufficiency of the RUNX2 gene. In our current study, we identified a novel and rare variant of the RUNX2 gene (c.181_189dupGCGGCGGCT) in a Japanese patient with phenotypic features of CCD. The insertion led an alanine tripeptide expansion (+3Ala) in the polyalanine tract. To date, a RUNX2 variant with alanine decapeptide expansion (+10Ala) is the only example of a causative variant of RUNX2 with polyalanine tract expansion to be reported, whilst RUNX2 (+1Ala) has been isolated from the healthy population. Thus, precise analyses of the RUNX2 (+3Ala) variant were needed to clarify whether the tripeptide expanded RUNX2 is a second disease-causing mutant with alanine tract expansion. We therefore investigated the biochemical properties of the mutant RUNX2 (+3Ala), which contains 20 alanine residues in the polyalanine tract. When transfected in COS7 cells, RUNX2 (+3Ala) formed intracellular ubiquitinated aggregates after 24h, and exerted a dominant negative effect in vitro. At 24h after gene transfection, whereas slight reduction was observed in RUNX2 (+10Ala), all of these mutants significantly activated osteoblast-specific element-2, a cis-acting sequence in the promoter of the RUNX2 target gene osteocalcin. The aggregation growth of RUNX2 (+3Ala) was clearly lower and slower than that of RUNX2 (+10Ala). Furthermore, we investigated several other RUNX2 variants with various alanine tract lengths, and found that the threshold for aggregation may be RUNX2 (+3Ala). We conclude that RUNX2 (+3Ala) is the cause of CCD in our current case, and that the accumulation of intracellular aggregates in vitro is related to the length of the alanine tract.


Assuntos
Displasia Cleidocraniana/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Expansão das Repetições de Trinucleotídeos , Adulto , Povo Asiático/genética , Linhagem Celular , Displasia Cleidocraniana/diagnóstico , Displasia Cleidocraniana/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Feminino , Humanos , Japão , Osteocalcina/metabolismo , Peptídeos , Ativação Transcricional
19.
Nature ; 464(7290): 927-31, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-20164836

RESUMO

Endogenous retroviruses (ERVs), retrovirus-like elements with long terminal repeats, are widely dispersed in the euchromatic compartment in mammalian cells, comprising approximately 10% of the mouse genome. These parasitic elements are responsible for >10% of spontaneous mutations. Whereas DNA methylation has an important role in proviral silencing in somatic and germ-lineage cells, an additional DNA-methylation-independent pathway also functions in embryonal carcinoma and embryonic stem (ES) cells to inhibit transcription of the exogenous gammaretrovirus murine leukaemia virus (MLV). Notably, a recent genome-wide study revealed that ERVs are also marked by histone H3 lysine 9 trimethylation (H3K9me3) and H4K20me3 in ES cells but not in mouse embryonic fibroblasts. However, the role that these marks have in proviral silencing remains unexplored. Here we show that the H3K9 methyltransferase ESET (also called SETDB1 or KMT1E) and the Krüppel-associated box (KRAB)-associated protein 1 (KAP1, also called TRIM28) are required for H3K9me3 and silencing of endogenous and introduced retroviruses specifically in mouse ES cells. Furthermore, whereas ESET enzymatic activity is crucial for HP1 binding and efficient proviral silencing, the H4K20 methyltransferases Suv420h1 and Suv420h2 are dispensable for silencing. Notably, in DNA methyltransferase triple knockout (Dnmt1(-/-)Dnmt3a(-/-)Dnmt3b(-/-)) mouse ES cells, ESET and KAP1 binding and ESET-mediated H3K9me3 are maintained and ERVs are minimally derepressed. We propose that a DNA-methylation-independent pathway involving KAP1 and ESET/ESET-mediated H3K9me3 is required for proviral silencing during the period early in embryogenesis when DNA methylation is dynamically reprogrammed.


Assuntos
Células-Tronco Embrionárias/enzimologia , Células-Tronco Embrionárias/virologia , Retrovirus Endógenos/genética , Inativação Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas Metiltransferases/metabolismo , Provírus/genética , Animais , Linhagem Celular , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/deficiência , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , DNA Metiltransferase 3A , Células-Tronco Embrionárias/metabolismo , Fibroblastos , Deleção de Genes , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Camundongos , Proteínas Nucleares/metabolismo , Proteínas Metiltransferases/deficiência , Proteínas Metiltransferases/genética , Proteínas Repressoras/metabolismo , Proteína 28 com Motivo Tripartido , DNA Metiltransferase 3B
20.
J Reprod Dev ; 62(1): 121-5, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26598326

RESUMO

Production of knockout mice using targeted embryonic stem cells (ESCs) is a powerful approach for investigating the function of specific genes in vivo. Although the protocol for gene targeting via homologous recombination (HR) in ESCs is already well established, the targeting efficiency varies at different target loci and is sometimes too low. It is known that knockdown of the Bloom syndrome gene, BLM, enhances HR-mediated gene targeting efficiencies in various cell lines. However, it has not yet been investigated whether this approach in ESCs is applicable for successful knockout mouse production. Therefore, we attempted to answer this question. Consistent with previous reports, Blm knockdown enhanced gene targeting efficiencies for three gene loci that we examined by 2.3-4.1-fold. Furthermore, the targeted ESC clones generated good chimeras and were successful in germline transmission. These data suggest that Blm knockdown provides a general benefit for efficient ESC-based and HR-mediated knockout mouse production.


Assuntos
Células-Tronco Embrionárias/citologia , Técnicas de Silenciamento de Genes , RecQ Helicases/genética , RecQ Helicases/fisiologia , Animais , DNA Helicases/genética , Marcação de Genes , Células Germinativas/metabolismo , Recombinação Homóloga , Cariotipagem , Camundongos , Camundongos Knockout , Interferência de RNA , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA