Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 55: 116590, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34973516

RESUMO

Pradimicin A (PRM-A) and its derivatives comprise a unique family of antibiotics that show antifungal, antiviral, and antiparasitic activities through binding to d-mannose (Man)-containing glycans of pathogenic species. Despite their great potential as drug leads with an exceptional antipathogenic action, therapeutic application of PRMs has been severely limited by their tendency to form water-insoluble aggregates. Recently, we found that attachment of 2-aminoethanol to the carboxy group of PRM-A via amide linkage significantly suppressed the aggregation. Here, we prepared additional amide derivatives (2-8) of PRM-A to examine the possibility that the amide formation of PRM-A could suppress its aggregation propensity. Sedimentation assay and isothermal titration calorimetry experiment confirmed that all amide derivatives can bind Man without significant aggregation. Among them, hydroxamic acid derivative (4) showed the most potent Man-binding activity, which was suggested to be derived from the anion formation of the hydroxamic acid moiety by molecular modeling. Derivative 4 also exhibited significant antifungal activity comparable to that of PRM-A. These results collectively indicate that amide formation of PRM-A is the promising strategy to develop less aggregative derivatives, and 4 could serve as a lead compound for exploring the therapeutic application of PRM-A.

2.
Bioorg Med Chem ; 28(4): 115308, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31956051

RESUMO

Quinocidin (QCD) is a cytotoxic antibiotic with an unusual 3,4-dihydroquinolizinium skeleton. We previously found that QCD captures thiols in neutral aqueous media via a Michael addition-type reaction. However, it remains unclear whether the Michael acceptor reactivity of QCD is responsible for its cytotoxicity. In this study, we synthesized thirteen analogs of QCD to examine the relationship among its structure, cytotoxicity, and reactivity toward thiols. Thiol-trapping experiments and cytotoxicity tests collectively suggested that the Michael acceptor function of QCD is independent of its cytotoxic activity, and that the pyridinium moiety with the hydrophobic side chain is a key structural factor for cytotoxicity. These findings further led us to demonstrate that incorporation of an amide group into the side chain of QCD significantly reduced its toxicity but hardly affected the Michael acceptor function. The present study lays the foundation for QCD-based drug design and highlights the potential of QCD as a unique electrophile for use in the development of covalent inhibitors and protein-labeling probes.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Quinolizinas/farmacologia , Antibióticos Antineoplásicos/síntese química , Antibióticos Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Estrutura Molecular , Quinolizinas/síntese química , Quinolizinas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA