Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Plant ; 154(2): 270-82, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25382626

RESUMO

In this study the role of the plasma membrane (PM) H(+) -ATPase for growth and development of roots as response to nitrogen starvation is studied. It is known that root development differs dependent on the availability of different mineral nutrients. It includes processes such as initiation of lateral root primordia, root elongation and increase of the root biomass. However, the signal transduction mechanisms, which enable roots to sense changes in different mineral environments and match their growth and development patterns to actual conditions in the soil, are still unknown. Most recent comments have focused on one of the essential macroelements, namely nitrogen, and its role in the modification of the root architecture of Arabidopsis thaliana. As yet, not all elements of the signal transduction pathway leading to the perception of the nitrate stimulus, and hence to anatomical changes of the root, which allow for adaptation to variable ion concentrations in the soil, are known. Our data demonstrate that primary and lateral root length were shorter and lower in aha2 mutant lines compared with wild-type plants in response to a variable nitrogen source. This suggests that the PM proton pump AHA2 (Arabidopsis plasma membrane H(+) -ATPase isoform 2) is important for root growth and development during different nitrogen regimes. This is possible by controlling the pH homeostasis in the root during growth and development as shown by pH biosensors.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Nitrogênio/metabolismo , ATPases Translocadoras de Prótons/genética , Adaptação Fisiológica , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/enzimologia , Transporte de Íons , Nitratos/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , ATPases Translocadoras de Prótons/metabolismo , Transdução de Sinais/genética
2.
Plant J ; 74(1): 37-47, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23279701

RESUMO

The Arabidopsis ATP-binding cassette B19 (ABCB19, P-glycoprotein19) transporter functions coordinately with ABCB1 and PIN1 to motivate long-distance transport of the phytohormone auxin from the shoot to root apex. ABCB19 exhibits a predominantly apolar plasma membrane (PM) localization and stabilizes PIN1 when the two proteins co-occur. Biochemical evidence associates ABCB19 and PIN1 with sterol- and sphingolipid-enriched PM fractions. Mutants deficient in structural sterols and sphingolipids exhibit similarity to abcb19 mutants. Sphingolipid-defective tsc10a mutants and, to a lesser extent, sterol-deficient cvp1 mutants phenocopy abcb19 mutants. Live imaging studies show that sterols function in trafficking of ABCB19 from the trans-Golgi network to the PM. Pharmacological or genetic sphingolipid depletion has an even greater impact on ABCB19 PM targeting and interferes with ABCB19 trafficking from the Golgi. Our results also show that sphingolipids function in trafficking associated with compartments marked by the VTI12 syntaxin, and that ABCB19 mediates PIN1 stability in sphingolipid-containing membranes. The TWD1/FKBP42 co-chaperone immunophilin is required for exit of ABCB19 from the ER, but ABCB19 interactions with sterols, sphingolipids and PIN1 are spatially distinct from FKBP42 activity at the ER. The accessibility of this system to direct live imaging and biochemical analysis makes it ideal for the modeling and analysis of sterol and sphingolipid regulation of ABCB/P-glycoprotein transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Esfingolipídeos/metabolismo , Esteróis/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Transporte Proteico , Proteínas de Ligação a Tacrolimo/metabolismo , Rede trans-Golgi/metabolismo
3.
Plant J ; 69(4): 640-54, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21992190

RESUMO

Arabidopsis ATP-binding cassette B4 (ABCB4) is a root-localised auxin efflux transporter with reported auxin uptake activity in low auxin concentrations. Results reported here demonstrate that ABCB4 is a substrate-activated regulator of cellular auxin levels. The contribution of ABCB4 to shootward auxin movement at the root apex increases with auxin concentration, but in root hair elongation assays ABCB4-mediated uptake is evident at low concentrations as well. Uptake kinetics of ABCB4 heterologously expressed in Schizosaccharomyces pombe differed from the saturation kinetics of AUX1 as uptake converted to efflux at threshold indole-3-acetic acid (IAA) concentrations. The concentration dependence of ABCB4 appears to be a direct effect on transporter activity, as ABCB4 expression and ABCB4 plasma membrane (PM) localisation at the root apex are relatively insensitive to changes in auxin concentration. However, PM localization of ABCB4 decreases with 1-naphthylphthalamic acid (NPA) treatment. Unlike other plant ABCBs studied to date, and consistent with decreased detergent solubility, ABCB4(pro) :ABCB4-GFP is partially internalised in all cell types by 0.05% DMSO, but not 0.1% ethanol. In trichoblasts, ABCB4(pro) :ABCB4-GFP PM signals are reduced by >200 nm IAA and 2,4-dichlorophenoxyacetic acid (2,4-D). In heterologous systems and in planta, ABCB4 transports benzoic acid with weak affinity, but not the oxidative catabolism products 2-oxindole-3-acetic-acid and 2-oxindole-3-acetyl-ß-D-glucose. ABCB4 mediates uptake, but not efflux, of the synthetic auxin 2,4-D in cells lacking AUX1 activity. Results presented here suggest that 2,4-D is a non-competitive inhibitor of IAA transport by ABCB4 and indicate that ABCB4 is a target of 2,4-D herbicidal activity.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Ácidos Indolacéticos/metabolismo , Ácido 2,4-Diclorofenoxiacético/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Membrana Celular/metabolismo , Indóis/metabolismo , Mutação , Oxindóis , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Transdução de Sinais/fisiologia , Nicotiana/genética , Nicotiana/metabolismo
4.
Front Plant Sci ; 7: 1198, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27574525

RESUMO

This year marks the 20th anniversary of the discovery and characterization of the two Arabidopsis PHT1 genes encoding the phosphate transporter in Arabidopsis thaliana. So far, multiple inorganic phosphate (Pi) transporters have been described, and the molecular basis of Pi acquisition by plants has been well-characterized. These genes are involved in Pi acquisition, allocation, and/or signal transduction. This review summarizes how Pi is taken up by the roots and further distributed within two plants: A. thaliana and Oryza sativa L. by plasma membrane phosphate transporters PHT1 and PHO1 as well as by intracellular transporters: PHO1, PHT2, PHT3, PHT4, PHT5 (VPT1), SPX-MFS and phosphate translocators family. We also describe the role of the PHT1 transporters in mycorrhizal roots of rice as an adaptive strategy to cope with limited phosphate availability in soil.

5.
J Plant Physiol ; 167(4): 261-9, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19857911

RESUMO

Polyamine content (PAs) often changes in response to abiotic stresses. It was shown that the accumulation of PAs decreased in roots treated for 24h with 200 mM NaCl. The role of polyamines (putrescine - PUT, spermidine - SPD and spermine - SPM) in the modification of the plasma membrane(PM) H(+)-ATPase (EC 3.6.3.6) and the vacuolar(V) H(+)-ATPase (EC 3.6.3.14) activities in cucumber roots treated with NaCl was investigated. 24h treatment of seedlings with 50 microM PUT, SPD or SPM lowered the activities of proton pumps in both membranes. The decreased H(+)-ATPase activity in plasma membranes isolated from the PA-treated roots was positively correlated with a lower level of PM-H(+)-ATPase CsHA3 transcript. However, transcript levels of PM-H(+)-ATPase CsHA2 and V-ATPase subunit A and c in roots treated with 50 microM PAs were similar to those in the control. Additionally, treatment of plants with salt markedly increased the activity of the PM- and V-H(+)-ATPases. However, exposure of plants to 20% PEG had no effect on these activities. These data suggest that, under salt stress conditions, the increase in H(+)-ATPase activities is caused mainly by the ionic component of salt stress. It seems that the main role of the PAs in the 24h salt-treated cucumber plants could be a result of their cationic character. The PA levels decreased when concentration of Na(+) increased, so action of PAs contributes to ionic equilibrium. Moreover, the decrease in the concentration of polyamines, which inhibit the PM-H(+)-ATPase and the V-H(+)-ATPase, at least under the studied conditions, seems to be beneficial. Thus, plants can increase salinity tolerance by modifying the biosynthesis of polyamines.


Assuntos
Membrana Celular/metabolismo , Cucumis sativus/metabolismo , Poliaminas/metabolismo , Bombas de Próton/metabolismo , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Vacúolos/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Biomassa , Western Blotting , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/enzimologia , Cucumis sativus/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Hidrólise/efeitos dos fármacos , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/enzimologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Polietilenoglicóis/farmacologia , Potássio/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Sódio/metabolismo , Soluções , Vacúolos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA