Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(52): E11267-E11275, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29229808

RESUMO

Insecticide-based interventions have contributed to ∼78% of the reduction in the malaria burden in sub-Saharan Africa since 2000. Insecticide resistance in malaria vectors could presage a catastrophic rebound in disease incidence and mortality. A major impediment to the implementation of insecticide resistance management strategies is that evidence of the impact of resistance on malaria disease burden is limited. A cluster randomized trial was conducted in Sudan with pyrethroid-resistant and carbamate-susceptible malaria vectors. Clusters were randomly allocated to receive either long-lasting insecticidal nets (LLINs) alone or LLINs in combination with indoor residual spraying (IRS) with a pyrethroid (deltamethrin) insecticide in the first year and a carbamate (bendiocarb) insecticide in the two subsequent years. Malaria incidence was monitored for 3 y through active case detection in cohorts of children aged 1 to <10 y. When deltamethrin was used for IRS, incidence rates in the LLIN + IRS arm and the LLIN-only arm were similar, with the IRS providing no additional protection [incidence rate ratio (IRR) = 1.0 (95% confidence interval [CI]: 0.36-3.0; P = 0.96)]. When bendiocarb was used for IRS, there was some evidence of additional protection [interaction IRR = 0.55 (95% CI: 0.40-0.76; P < 0.001)]. In conclusion, pyrethroid resistance may have had an impact on pyrethroid-based IRS. The study was not designed to assess whether resistance had an impact on LLINs. These data alone should not be used as the basis for any policy change in vector control interventions.


Assuntos
Anopheles , Resistência a Medicamentos , Inseticidas , Malária Falciparum , Controle de Mosquitos/economia , Nitrilas , Fenilcarbamatos , Piretrinas , Animais , Criança , Pré-Escolar , Custos e Análise de Custo , Feminino , Humanos , Incidência , Inseticidas/economia , Inseticidas/farmacologia , Malária Falciparum/economia , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Masculino , Nitrilas/economia , Nitrilas/farmacologia , Fenilcarbamatos/economia , Fenilcarbamatos/farmacologia , Piretrinas/economia , Piretrinas/farmacologia , Sudão/epidemiologia
2.
Malar J ; 18(1): 37, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30744666

RESUMO

BACKGROUND: Insecticide-based interventions have averted more than 500 million malaria cases since 2000, but insecticide resistance in mosquitoes could bring about a rebound in disease and mortality. This study investigated whether insecticide resistance was associated with increased incidence of clinical malaria. METHODS: In an area of southern Benin with insecticide resistance and high use of insecticide-treated nets (ITNs), malaria morbidity and insecticide resistance were measured simultaneously in 30 clusters (villages or collections of villages) multiple times over the course of 2 years. Insecticide resistance frequencies were measured using the standard World Health Organization bioassay test. Malaria morbidity was measured by cases recorded at health facilities both in the whole population using routinely collected data and in a passively followed cohort of children under 5 years old. RESULTS: There was no evidence that incidence of malaria from routinely collected data was higher in clusters with resistance frequencies above the median, either in children aged under 5 (RR = 1.27 (95% CI 0.81-2.00) p = 0.276) or in individuals aged 5 or over (RR = 1.74 (95% CI 0.91-3.34) p = 0.093). There was also no evidence that incidence was higher in clusters with resistance frequencies above the median in the passively followed cohort (RR = 1.11 (0.52-2.35) p = 0.777). CONCLUSIONS: This study found no association between frequency of resistance and incidence of clinical malaria in an area where ITNs are the principal form of vector control. This may be because, as other studies have shown, ITNs continue to offer some protection from malaria even in the presence of insecticide resistance. Irrespective of resistance, nets provide only partial protection so the development of improved or supplementary vector control tools is required to reduce Africa's unacceptably high malaria burden.


Assuntos
Culicidae/efeitos dos fármacos , Transmissão de Doença Infecciosa/prevenção & controle , Resistência a Inseticidas , Mosquiteiros Tratados com Inseticida , Malária/epidemiologia , Malária/prevenção & controle , Controle de Mosquitos/métodos , Animais , Benin/epidemiologia , Bioensaio , Pré-Escolar , Feminino , Seguimentos , Humanos , Incidência , Lactente , Recém-Nascido , Masculino , População Rural
3.
Malar J ; 14: 282, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26194648

RESUMO

BACKGROUND: Progress in reducing the malaria disease burden through the substantial scale up of insecticide-based vector control in recent years could be reversed by the widespread emergence of insecticide resistance. The impact of insecticide resistance on the protective effectiveness of insecticide-treated nets (ITN) and indoor residual spraying (IRS) is not known. A multi-country study was undertaken in Sudan, Kenya, India, Cameroon and Benin to quantify the potential loss of epidemiological effectiveness of ITNs and IRS due to decreased susceptibility of malaria vectors to insecticides. The design of the study is described in this paper. METHODS: Malaria disease incidence rates by active case detection in cohorts of children, and indicators of insecticide resistance in local vectors were monitored in each of approximately 300 separate locations (clusters) with high coverage of malaria vector control over multiple malaria seasons. Phenotypic and genotypic resistance was assessed annually. In two countries, Sudan and India, clusters were randomly assigned to receive universal coverage of ITNs only, or universal coverage of ITNs combined with high coverage of IRS. Association between malaria incidence and insecticide resistance, and protective effectiveness of vector control methods and insecticide resistance were estimated, respectively. RESULTS: Cohorts have been set up in all five countries, and phenotypic resistance data have been collected in all clusters. In Sudan, Kenya, Cameroon and Benin data collection is due to be completed in 2015. In India data collection will be completed in 2016. DISCUSSION: The paper discusses challenges faced in the design and execution of the study, the analysis plan, the strengths and weaknesses, and the possible alternatives to the chosen study design.


Assuntos
Culicidae/efeitos dos fármacos , Insetos Vetores/efeitos dos fármacos , Resistência a Inseticidas , Malária/epidemiologia , Malária/prevenção & controle , África Subsaariana/epidemiologia , Animais , Pré-Escolar , Feminino , Humanos , Índia/epidemiologia , Lactente , Recém-Nascido , Inseticidas/farmacologia , Malária/transmissão , Controle de Mosquitos/métodos , Prevalência
4.
Pathogens ; 11(2)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35215196

RESUMO

Understanding how multiple insecticide resistance mechanisms occur in malaria vectors is essential for efficient vector control. This study aimed at assessing the evolution of metabolic mechanisms and Kdr L995F/S resistance alleles in Anopheles gambiae s.l. from North Cameroon, following long-lasting insecticidal nets (LLINs) distribution in 2011. Female An. gambiae s.l. emerging from larvae collected in Ouro-Housso/Kanadi, Be-Centre, and Bala in 2011 and 2015, were tested for susceptibility to deltamethrin + piperonyl butoxide (PBO) or SSS-tributyl-phosphoro-thrithioate (DEF) synergists, using the World Health Organization's standard protocol. The Kdr L995F/S alleles were genotyped using Hot Ligation Oligonucleotide Assay. Tested mosquitoes identified using PCR-RFLP were composed of An. arabiensis (68.5%), An. coluzzii (25.5%) and An. gambiae (6%) species. From 2011 to 2015, metabolic resistance increased in Ouro-Housso/Kanadi (up to 89.5% mortality to deltametnrin+synergists in 2015 versus <65% in 2011; p < 0.02), while it decreased in Be-Centre and Bala (>95% mortality in 2011 versus 42-94% in 2015; p < 0.001). Conversely, the Kdr L995F allelic frequencies slightly decreased in Ouro-Housso/Kanadi (from 50% to 46%, p > 0.9), while significantly increasing in Be-Centre and Bala (from 0-13% to 18-36%, p < 0.02). These data revealed two evolutionary trends of deltamethrin resistance mechanisms; non-pyrethroid vector control tools should supplement LLINs in North Cameroon.

5.
PLoS One ; 14(2): e0212024, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30779799

RESUMO

The effectiveness of insecticide-based malaria vector control interventions in Africa is threatened by the spread and intensification of pyrethroid resistance in targeted mosquito populations. The present study aimed at investigating the temporal and spatial dynamics of deltamethrin resistance in An. gambiae s.l. populations from North Cameroon. Mosquito larvae were collected from 24 settings of the Garoua, Pitoa and Mayo Oulo Health Districts (HDs) from 2011 to 2015. Two to five days old female An. gambiae s.l. emerging from larval collections were tested for deltamethrin resistance using the World Health Organization's (WHO) standard protocol. Sub samples of test mosquitoes were identified to species using PCR-RFLP and genotyped for knockdown resistance alleles (Kdr 1014F and 1014S) using Hot Ligation Oligonucleotide Assay (HOLA). All the tested mosquitoes were identified as belonging to the An. gambiae complex, including 3 sibling species mostly represented by Anopheles arabiensis (67.6%), followed by Anopheles coluzzii (25.4%) and Anopheles gambiae (7%). Deltamethrin resistance frequencies increased significantly between 2011 and 2015, with mosquito mortality rates declining from 70-85% to 49-73% in the three HDs (Jonckheere-Terstra test statistic (JT) = 5638, P< 0.001), although a temporary increase of mortality rates (91-97%) was seen in the Pitoa and Mayo Oulo HDs in 2012. Overall, confirmed resistance emerged in 10 An. gambiae s.l. populations over the 24 field populations monitored during the study period, from 2011 to 2015. Phenotypic resistance was mostly found in urban settings compared with semi-urban and rural settings (JT = 5282, P< 0.0001), with a spatial autocorrelation between neighboring localities. The Kdr 1014F allelic frequencies in study HDs increased from 0-30% in 2011 to 18-61% in 2014-2015 (JT = 620, P <0.001), especially in An. coluzzii samples. The overall frequency of the Kdr 1014S allele was 0.1%. This study revealed a rapid increase and widespread deltamethrin resistance frequency as well as Kdr 1014F allelic frequencies in An. gambiae s.l. populations over time, emphasizing the urgent need for vector surveillance and insecticide resistance management strategies in Cameroon.


Assuntos
Anopheles/efeitos dos fármacos , Proteínas de Insetos/genética , Resistência a Inseticidas , Nitrilas/farmacologia , Piretrinas/farmacologia , Animais , Anopheles/genética , Anopheles/crescimento & desenvolvimento , Camarões , Feminino , Frequência do Gene , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Malária/prevenção & controle , Malária/transmissão , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , Mosquitos Vetores/crescimento & desenvolvimento , Planejamento Social , Análise Espaço-Temporal , Reforma Urbana
6.
Lancet Infect Dis ; 18(6): 640-649, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29650424

RESUMO

BACKGROUND: Scale-up of insecticide-based interventions has averted more than 500 million malaria cases since 2000. Increasing insecticide resistance could herald a rebound in disease and mortality. We aimed to investigate whether insecticide resistance was associated with loss of effectiveness of long-lasting insecticidal nets and increased malaria disease burden. METHODS: This WHO-coordinated, prospective, observational cohort study was done at 279 clusters (villages or groups of villages in which phenotypic resistance was measurable) in Benin, Cameroon, India, Kenya, and Sudan. Pyrethroid long-lasting insecticidal nets were the principal form of malaria vector control in all study areas; in Sudan this approach was supplemented by indoor residual spraying. Cohorts of children from randomly selected households in each cluster were recruited and followed up by community health workers to measure incidence of clinical malaria and prevalence of infection. Mosquitoes were assessed for susceptibility to pyrethroids using the standard WHO bioassay test. Country-specific results were combined using meta-analysis. FINDINGS: Between June 2, 2012, and Nov 4, 2016, 40 000 children were enrolled and assessed for clinical incidence during 1·4 million follow-up visits. 80 000 mosquitoes were assessed for insecticide resistance. Long-lasting insecticidal net users had lower infection prevalence (adjusted odds ratio [OR] 0·63, 95% CI 0·51-0·78) and disease incidence (adjusted rate ratio [RR] 0·62, 0·41-0·94) than did non-users across a range of resistance levels. We found no evidence of an association between insecticide resistance and infection prevalence (adjusted OR 0·86, 0·70-1·06) or incidence (adjusted RR 0·89, 0·72-1·10). Users of nets, although significantly better protected than non-users, were nevertheless subject to high malaria infection risk (ranging from an average incidence in net users of 0·023, [95% CI 0·016-0·033] per person-year in India, to 0·80 [0·65-0·97] per person year in Kenya; and an average infection prevalence in net users of 0·8% [0·5-1·3] in India to an average infection prevalence of 50·8% [43·4-58·2] in Benin). INTERPRETATION: Irrespective of resistance, populations in malaria endemic areas should continue to use long-lasting insecticidal nets to reduce their risk of infection. As nets provide only partial protection, the development of additional vector control tools should be prioritised to reduce the unacceptably high malaria burden. FUNDING: Bill & Melinda Gates Foundation, UK Medical Research Council, and UK Department for International Development.


Assuntos
Culicidae , Mosquiteiros Tratados com Inseticida , Malária , Controle de Mosquitos , Mosquitos Vetores , Piretrinas , Adolescente , Animais , Criança , Pré-Escolar , Humanos , Lactente , África Subsaariana/epidemiologia , Estudos de Coortes , Culicidae/efeitos dos fármacos , Índia/epidemiologia , Resistência a Inseticidas , Internacionalidade , Malária/epidemiologia , Malária/transmissão , Controle de Mosquitos/métodos , Mosquitos Vetores/efeitos dos fármacos , Estudos Prospectivos , Piretrinas/farmacologia , Organização Mundial da Saúde
7.
Am J Trop Med Hyg ; 94(3): 679-685, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26811431

RESUMO

Cutaneous leishmaniasis (CL) remains an important public health problem in Morocco. A cluster-randomized trial was conducted with the following three study arms: 1) long-lasting insecticide-treated nets (LLINs) plus standard of care environmental management (SoC-EM), 2) indoor residual spraying (IRS) with α-cypermethrin plus SoC-EM, and 3) SoC-EM alone. Incidence of new CL cases by passive and active case detection, sandfly abundance, and cost and cost-effectiveness was compared between study arms over 5 years. Incidence of CL and sandfly abundance were significantly lower in the IRS arm compared with SoC-EM (CL incidence rate ratio = 0.32, 95% confidence interval [CI] = 0.15-0.69, P = 0.005 and sandfly abundance ratio = 0.39, 95% CI = 0.18-0.85, P = 0.022). Reductions in the LLIN arm of the study were not significant, possibly due to poor compliance. IRS was effective and more cost-effective for the prevention of CL in Morocco.


Assuntos
Análise Custo-Benefício , Mosquiteiros Tratados com Inseticida , Inseticidas/farmacologia , Leishmaniose Cutânea/prevenção & controle , Phlebotomus/efeitos dos fármacos , Animais , Humanos , Mosquiteiros Tratados com Inseticida/economia , Inseticidas/economia , Leishmaniose Cutânea/epidemiologia , Marrocos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA