Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Part Fibre Toxicol ; 20(1): 22, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217992

RESUMO

BACKGROUND: Copper oxide nanoparticles (Nano-CuO) are one of the most produced and used nanomaterials. Previous studies have shown that exposure to Nano-CuO caused acute lung injury, inflammation, and fibrosis. However, the mechanisms underlying Nano-CuO-induced lung fibrosis are still unclear. Here, we hypothesized that exposure of human lung epithelial cells and macrophages to Nano-CuO would upregulate MMP-3, which cleaved osteopontin (OPN), resulting in fibroblast activation and lung fibrosis. METHODS: A triple co-culture model was established to explore the mechanisms underlying Nano-CuO-induced fibroblast activation. Cytotoxicity of Nano-CuO on BEAS-2B, U937* macrophages, and MRC-5 fibroblasts were determined by alamarBlue and MTS assays. The expression or activity of MMP-3, OPN, and fibrosis-associated proteins was determined by Western blot or zymography assay. Migration of MRC-5 fibroblasts was evaluated by wound healing assay. MMP-3 siRNA and an RGD-containing peptide, GRGDSP, were used to explore the role of MMP-3 and cleaved OPN in fibroblast activation. RESULTS: Exposure to non-cytotoxic doses of Nano-CuO (0.5 and 1 µg/mL) caused increased expression and activity of MMP-3 in the conditioned media of BEAS-2B and U937* cells, but not MRC-5 fibroblasts. Nano-CuO exposure also caused increased production of cleaved OPN fragments, which was abolished by MMP-3 siRNA transfection. Conditioned media from Nano-CuO-exposed BEAS-2B, U937*, or the co-culture of BEAS-2B and U937* caused activation of unexposed MRC-5 fibroblasts. However, direct exposure of MRC-5 fibroblasts to Nano-CuO did not induce their activation. In a triple co-culture system, exposure of BEAS-2B and U937* cells to Nano-CuO caused activation of unexposed MRC-5 fibroblasts, while transfection of MMP-3 siRNA in BEAS-2B and U937* cells significantly inhibited the activation and migration of MRC-5 fibroblasts. In addition, pretreatment with GRGDSP peptide inhibited Nano-CuO-induced activation and migration of MRC-5 fibroblasts in the triple co-culture system. CONCLUSIONS: Our results demonstrated that Nano-CuO exposure caused increased production of MMP-3 from lung epithelial BEAS-2B cells and U937* macrophages, which cleaved OPN, resulting in the activation of lung fibroblasts MRC-5. These results suggest that MMP-3-cleaved OPN may play a key role in Nano-CuO-induced activation of lung fibroblasts. More investigations are needed to confirm whether these effects are due to the nanoparticles themselves and/or Cu ions.


Assuntos
Cobre , Fibroblastos , Metaloproteinase 3 da Matriz , Nanopartículas Metálicas , Osteopontina , Humanos , Linhagem Celular , Metaloproteinase 3 da Matriz/metabolismo , Cobre/farmacologia , Fibroblastos/efeitos dos fármacos , Osteopontina/metabolismo , Técnicas de Cocultura , Pulmão/citologia , Células Epiteliais/metabolismo , Macrófagos/metabolismo
2.
Part Fibre Toxicol ; 20(1): 41, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919797

RESUMO

BACKGROUND: Epidemiological studies have demonstrated that individuals with preexisting conditions, including diabetes mellitus (DM), are more susceptible to air pollution. However, the underlying mechanisms remain unclear. In this study, we proposed that a high glucose setting enhances ambient fine particulate matter (PM2.5)-induced macrophage activation and secretion of the proinflammatory cytokine, IL-1ß, through activation of the NLRP3 inflammasome, altering the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs). RESULTS: Exposure of mouse alveolar macrophages to non-cytotoxic doses of PM2.5 led to upregulation of IL-1ß, activation of the NLRP3 inflammasome, increased nuclear translocation of the transcription factor NF-κB, increased generation of reactive oxygen species (ROS), and increased expression and enzymatic activity of MMP-9; these effects were enhanced when cells were pretreated with high glucose. However, pretreatment in a high glucose setting alone did not induce significant changes. ROS generation following PM2.5 exposure was abolished when cells were pretreated with ROS scavengers such as Trolox and superoxide dismutase (SOD), or with an NADPH oxidase inhibitor, DPI. Pretreatment of cells with DPI attenuated the effects of a high glucose setting on PM2.5-induced upregulation of IL-1ß, activation of the NLRP3 inflammasome, and nuclear translocation of NF-κB. In addition, enhancement of PM2.5-induced expression and enzymatic activity of MMP-9 following high glucose pretreatment was not observed in primary alveolar macrophages obtained from NLRP3 or IL-1R1 knockout (KO) mice, where pro-IL-1ß cannot be cleaved to IL-1ß or cells are insensitive to IL-1ß, respectively. CONCLUSIONS: This study demonstrated that exposure of mouse alveolar macrophages to PM2.5 in a high glucose setting enhanced PM2.5-induced production of IL-1ß through activation of the NLRP3 inflammasome and nuclear translocation of NF-κB due to PM2.5-induced oxidative stress, leading to MMP-9 upregulation. The key role of NADPH oxidase in PM2.5-induced ROS generation and activation of the IL-1ß secretion pathway and the importance of IL-1ß secretion and signaling in PM2.5-induced increases in MMP-9 enzymatic activity were also demonstrated. This study provides a further understanding of the potential mechanisms underlying the susceptibility of individuals with DM to air pollution and suggests potential therapeutic targets.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Macrófagos Alveolares/metabolismo , Material Particulado/toxicidade , NF-kappa B/metabolismo , Metaloproteinase 9 da Matriz , Espécies Reativas de Oxigênio/metabolismo , Glucose , NADPH Oxidases , Interleucina-1beta/genética , Interleucina-1beta/metabolismo
3.
Ecotoxicol Environ Saf ; 246: 114180, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36265406

RESUMO

Benzo[a]pyrene (B[a]P) is a widespread carcinogenic pollutant in the environment. Although previous studies have demonstrated the neurodevelopmental toxicity of B[a]P, the precise mechanisms underlying the neurotoxic effects induced by prenatal B[a]P exposure remain largely unknown. In the present study, pregnant Sprague-Dawley (SD) rats were injected intraperitoneally with 0, 10, 20, or 40 mg/kg-bw of B[a]P for three consecutive days on embryonic days 17-19. The learning and memory abilities of offspring were determined by Morris Water Maze (MWM) test, while the number of dendritic branches and the density of dendritic spines in hippocampal CA1 and DG regions were evaluated by Golgi-Cox staining at PND 45 and PND 75. The mRNA expression of BDNF, PSD-95, and SYP in offspring hippocampus were detected by qRT-PCR, and the protein expression of BDNF, PSD-95, SYP, HDAC2, acH3K9, and acH3K14 were measured by Western blotting or immunohistochemistry. CHIP-PCR was performed to further detect the levels of acH3K9 and acH3K14 in the promoter regions of BDNF and PSD-95 genes. Our results showed that rats prenatally exposed to B[a]P exhibited impaired spatial learning and memory abilities and the number of dendritic branches and the density of dendritic spines in the hippocampal CA1 and DG regions were significantly reduced during adolescence and adulthood. The expression of HDAC2 protein was significantly upregulated, while acH3K9, acH3K14, BDNF, PSD-95, and SYP protein levels were significantly downregulated in the hippocampus of B[a]P- exposed rats. In addition, CHIP results showed that prenatal B[a]P exposure markedly decreased the level of acH3K9 and acH3K14 in the promoter region of BDNF and PSD-95 gene in the hippocampus of PND 45 and PND 75 offspring. All of the results suggest that prenatal B[a]P exposure impairs cognitive function and hippocampal synaptic plasticity of offspring in adolescence and adulthood, and HDAC2-mediated histone deacetylation plays a crucial role in these deficits.


Assuntos
Benzo(a)pireno , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Humanos , Animais , Ratos , Ratos Sprague-Dawley , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Histonas/genética , Histonas/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Hipocampo , Plasticidade Neuronal , Aprendizagem Espacial , Cognição , Aprendizagem em Labirinto , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Histona Desacetilase 2/farmacologia
4.
Environ Toxicol ; 37(8): 2103-2114, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35506645

RESUMO

Coal workers' pneumoconiosis (CWP) is a type of typical occupational lung disease caused by prolonged inhalation of coal mine dust. The individuals' different genetic background may underlie their different susceptibility to develop pneumoconiosis, even under the same exposure level. This study aimed to identify susceptibility genes associated with CWP. Based on our previous genome-wide association study (GWAS, 202 CWP cases vs. 198 controls) and gene expression data obtained by analyzing human lungs and whole blood from the Genotype-Tissue Expression (GTEx) Portal, a transcriptome-wide association study (TWAS) was applied to identify CWP risk-related genes. Luciferase report gene assay, qRT-PCR, Western blot, immunofluorescence assay, and TUNEL assay were conducted to explore the potential role of the candidate gene in CWP. Proteasome 20S subunit beta 9 (PSMB9) was identified as a strong risk-related gene of CWP in both lungs and whole blood (Lungs: PTWAS  = 4.22 × 10-4 ; Whole blood: PTWAS  = 2.11 × 10-4 ). Single nucleotide polymorphisms (SNPs) rs2071480 and rs1351383, which locate in the promoter region and the first intron of the PSMB9 gene, were in high linkage disequilibrium (LD, r2  = 0.98) with the best GWAS SNP rs4713600 (G>T, OR = 0.55, 95% CI: 0.42-0.74, P = 6.86 × 10-5 ). Both rs2071480 and rs1351383 significantly enhanced the transcriptional activity of PSMB9. Functional experiments revealed that silica exposure remarkably reduced the PSMB9 expression and caused cell apoptosis, while overexpression of PSMB9 markedly abolished silica-induced cell apoptosis. We here identified PSMB9 as a novel susceptibility gene for CWP and provided important insights into the further exploration of the CWP pathogenesis.


Assuntos
Antracose , Cisteína Endopeptidases/metabolismo , Pneumoconiose , Antracose/genética , Carvão Mineral , Poeira , Estudo de Associação Genômica Ampla , Humanos , Dióxido de Silício , Transcriptoma
5.
Part Fibre Toxicol ; 18(1): 13, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33740985

RESUMO

BACKGROUND: The increasing use of metal nanoparticles in industry and biomedicine raises the risk for unintentional exposure. The ability of metal nanoparticles to penetrate the skin ranges from stopping at the stratum corneum to passing below the dermis and entering the systemic circulation. Despite the potential health risks associated with skin exposure to metal nanoparticles, the mechanisms underlying the toxicity of metal nanoparticles on skin keratinocytes remain unclear. In this study, we proposed that exposure of human epidermal keratinocytes (HaCaT) to metal nanoparticles, such as nickel nanoparticles, dysregulates tight-junction associated proteins by interacting with the HIF-1α/miR-29b/MMPs axis. METHODS: We performed dose-response and time-response studies in HaCaT cells to observe the effects of Nano-Ni or Nano-TiO2 on the expression and activity of MMP-2 and MMP-9, and on the expression of tight junction-associated proteins, TIMP-1, TIMP-2, miR-29b, and HIF-1α. In the dose-response studies, cells were exposed to 0, 10, or 20 µg/mL of Nano-Ni or Nano-TiO2 for 24 h. In the time-response studies, cells were exposed to 20 µg/mL of Nano-Ni for 12, 24, 48, or 72 h. After treatment, cells were collected to either assess the expression of mRNAs and miR-29b by real-time PCR or to determine the expression of tight junction-associated proteins and HIF-1α nuclear accumulation by Western blot and/or immunofluorescent staining; the conditioned media were collected to evaluate the MMP-2 and MMP-9 activities by gelatin zymography assay. To further investigate the mechanisms underlying Nano-Ni-induced dysregulation of tight junction-associated proteins, we employed a HIF-1α inhibitor, CAY10585, to perturb HIF-1α accumulation in one experiment, and transfected a miR-29b-3p mimic into the HaCaT cells before Nano-Ni exposure in another experiment. Cells and conditioned media were collected, and the expression and activities of MMPs and the expression of tight junction-associated proteins were determined as described above. RESULTS: Exposure of HaCaT cells to Nano-Ni resulted in a dose-dependent increase in the expression of MMP-2, MMP-9, TIMP-1, and TIMP-2 and the activities of MMP-2 and MMP-9. However, exposure of cells to Nano-TiO2 did not cause these effects. Nano-Ni caused a dose-dependent decrease in the expression of miR-29b and tight junction-associated proteins, such as ZO-1, occludin, and claudin-1, while Nano-TiO2 did not. Nano-Ni also caused a dose-dependent increase in HIF-1α nuclear accumulation. The time-response studies showed that Nano-Ni caused significantly increased expressions of MMP-2 at 24 h, MMP-9 at 12, 24, and 48 h, TIMP-1 from 24 to 72 h, and TIMP-2 from 12 to 72 h post-exposure. The expression of miR-29b and tight junction-associated proteins such as ZO-1, occludin, and claudin-1 decreased as early as 12 h post-exposure, and their levels declined gradually over time. Pretreatment of cells with a HIF-1α inhibitor, CAY10585, abolished Nano-Ni-induced miR-29b down-regulation and MMP-2/9 up-regulation. Introduction of a miR-29b-3p mimic into HaCaT cells by transfection before Nano-Ni exposure ameliorated Nano-Ni-induced increased expression and activity of MMP-2 and MMP-9 and restored Nano-Ni-induced down-regulation of tight junction-associated proteins. CONCLUSION: Our study herein demonstrated that exposure of human epidermal keratinocytes to Nano-Ni caused increased HIF-1α nuclear accumulation and increased transcription and activity of MMP-2 and MMP-9 and down-regulation of miR-29b and tight junction-associated proteins. Nano-Ni-induced miR-29b down-regulation was through Nano-Ni-induced HIF-1α nuclear accumulation. Restoration of miR-29b level by miR-29b-3p mimic transfection abolished Nano-Ni-induced MMP-2 and MMP-9 activation and down-regulation of tight junction-associated proteins. In summary, our results demonstrated that Nano-Ni-induced dysregulation of tight junction-associated proteins in skin keratinocytes was via HIF-1α/miR-29b/MMPs pathway.


Assuntos
Nanopartículas Metálicas , MicroRNAs , Humanos , Queratinócitos , Metaloproteinases da Matriz , Nanopartículas Metálicas/toxicidade , Proteínas de Junções Íntimas , Junções Íntimas
6.
J Nanobiotechnology ; 19(1): 370, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789290

RESUMO

BACKGROUND: Nickel nanoparticles (Nano-Ni) are increasingly used in industry and biomedicine with the development of nanotechnology. However, the genotoxic and carcinogenic effects of Nano-Ni and the underlying mechanisms are still unclear. METHODS: At first, dose-response (0, 10, 20, and 30 µg/mL) and time-response (0, 3, 6, 12, and 24 h) studies were performed in immortalized normal human bronchial epithelial cells BEAS-2B to observe the effects of Nano-Ni on DNA damage response (DDR)-associated proteins and the HIF-1α/miR-210/Rad52 pathway by real-time PCR or Western blot. Then, a Hsp90 inhibitor (1 µM of 17-AAG, an indirect HIF-1α inhibitor), HIF-1α knock-out (KO) cells, and a miR-210 inhibitor (20 nM) were used to determine whether Nano-Ni-induced Rad52 down-regulation was through HIF-1α nuclear accumulation and miR-210 up-regulation. In the long-term experiments, cells were treated with 0.25 and 0.5 µg/mL of Nano-Ni for 21 cycles (~ 150 days), and the level of anchorage-independent growth was determined by plating the cells in soft agar. Transduction of lentiviral particles containing human Rad52 ORF into BEAS-2B cells was used to observe the role of Rad52 in Nano-Ni-induced cell transformation. Nano-Ni-induced DNA damage and dysregulation of HIF-1α/miR-210/Rad52 pathway were also investigated in vivo by intratracheal instillation of 50 µg per mouse of Nano-Ni. gpt delta transgenic mice were used to analyze mutant frequency and mutation spectrum in mouse lungs after Nano-Ni exposure. RESULTS: Nano-Ni exposure caused DNA damage at both in vitro and in vivo settings, which was reflected by increased phosphorylation of DDR-associated proteins such as ATM at Ser1981, p53 at Ser15, and H2AX. Nano-Ni exposure also induced HIF-1α nuclear accumulation, miR-210 up-regulation, and down-regulation of homologous recombination repair (HRR) gene Rad52. Inhibition of or knocking-out HIF-1α or miR-210 ameliorated Nano-Ni-induced Rad52 down-regulation. Long-term low-dose Nano-Ni exposure led to cell malignant transformation, and augmentation of Rad52 expression significantly reduced Nano-Ni-induced cell transformation. In addition, increased immunostaining of cell proliferation markers, Ki-67 and PCNA, was observed in bronchiolar epithelial cells and hyperplastic pneumocytes in mouse lungs at day 7 and day 42 after Nano-Ni exposure. Finally, using gpt delta transgenic mice revealed that Nano-Ni exposure did not cause increased gpt mutant frequency and certain DNA mutations, such as base substitution and small base insertions/deletions, are not the main types of Nano-Ni-induced DNA damage. CONCLUSIONS: This study unraveled the mechanisms underlying Nano-Ni-induced cell malignant transformation; the combined effects of Nano-Ni-induced DNA damage and DNA repair defects through HIF-1α/miR-210/Rad52 pathway likely contribute to Nano-Ni-induced genomic instability and ultimately cell transformation. Our findings will provide information to further elucidate the molecular mechanisms of Nano-Ni-induced genotoxicity and carcinogenicity.


Assuntos
Transformação Celular Neoplásica/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Nanopartículas Metálicas , MicroRNAs/genética , Níquel , Animais , Linhagem Celular , Reparo do DNA/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Níquel/química , Níquel/toxicidade , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo
7.
Ecotoxicol Environ Saf ; 220: 112372, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34082245

RESUMO

Silicosis is a devastating interstitial lung disease arising from long-term exposure to inhalable silica. Regrettably, no therapy currently can effectively reverse the silica-induced fibrotic lesion. Emerging evidence has indicated that the dysregulation of microRNAs is involved in silica-induced pulmonary fibrosis. The aim of this study is to explore the expression pattern and underlying mechanisms of miR-770-5p in silica-induced pulmonary fibrosis. Consistent with our previous miRNA microarray analysis, the results of qRT-PCR showed that miR-770-5p expression was downregulated in silica-induced pulmonary fibrosis in humans and animal models. Administration of miR-770-5p agomir significantly reduced the fibrotic lesions in the lungs of mice exposed to silica dust. MiR-770-5p also exhibited a dramatic reduction in TGF-ß1-activated human pulmonary fibroblasts (MRC-5). Transfection of miR-770-5p mimics significantly decreased the viability, migration ability, and S/G0 phase distribution, as well as the expression of fibronectin, collagen I, and α-SMA in TGF-ß1-treated MRC-5 cells. Transforming growth factor-ß receptor 1 (TGFBR1) was confirmed as a direct target of regulation by miR-770-5p. The expression of TGFBR1 was significantly increased in pulmonary fibrosis. Knockdown of TGFBR1 blocked the transduction of the TGF-ß1 signaling pathway and attenuated the activation of MRC-5 cells, while overexpression of TGFBR1 effectively restored the activation of MRC-5 cells inhibited by miR-770-5p. Together, our results demonstrated that miR-770-5p exerted an anti-fibrotic effect in silica-induced pulmonary fibrosis by targeting TGFBR1. Targeting miR-770-5p might provide a new therapeutic strategy to prevent the abnormal activation of pulmonary fibroblasts in silicosis.


Assuntos
Fibroblastos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , MicroRNAs/metabolismo , Fibrose Pulmonar/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Dióxido de Silício/efeitos adversos , Silicose/metabolismo , Adulto , Idoso , Animais , Regulação para Baixo , Fibroblastos/metabolismo , Fibrose , Humanos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fibrose Pulmonar/induzido quimicamente , Transdução de Sinais , Silicose/patologia , Fator de Crescimento Transformador beta1/metabolismo
8.
J Nanobiotechnology ; 17(1): 2, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30616599

RESUMO

BACKGROUND: Previous studies have demonstrated that exposure to nickel nanoparticles (Nano-Ni) causes oxidative stress and severe, persistent lung inflammation, which are strongly associated with pulmonary toxicity. However, few studies have investigated whether surface modification of Nano-Ni could alter Nano-Ni-induced lung injury, inflammation, and fibrosis in vivo. Here, we propose that alteration of physicochemical properties of Nano-Ni through modification of Nano-Ni surface may change Nano-Ni-induced lung injury, inflammation, and fibrosis. METHODS: At first, dose-response and time-response studies were performed to observe lung inflammation and injury caused by Nano-Ni. In the dose-response studies, mice were intratracheally instilled with 0, 10, 20, 50, and 100 µg per mouse of Nano-Ni and sacrificed at day 3 post-exposure. In the time-response studies, mice were intratracheally instilled with 50 µg per mouse of Nano-Ni and sacrificed at days 1, 3, 7, 14, 28, and 42 post-instillation. At the end of the experiment, mice were bronchoalveolar lavaged (BAL) and the neutrophil count, CXCL1/KC level, LDH activity, and concentration of total protein in the BAL fluid (BALF) were determined. In the comparative studies, mice were intratracheally instilled with 50 µg per mouse of Nano-Ni or with the same molar concentration of Ni as Nano-Ni of either partially [O]-passivated Nano-Ni (Nano-Ni-P) or carbon-coated Nano-Ni (Nano-Ni-C). At day 3 post-exposure, BAL was performed and the above cellular and biochemical parameters in the BALF were analyzed. The MMP-2/9 protein levels and activities in the BALF and mouse lung tissues were also determined. Mouse lung tissues were also collected for H&E staining, and measurement of thiobarbituric acid reactive substances (TBARS) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in the genomic DNA. At day 42 post-exposure, mouse right lung tissues were collected for H&E and Trichrome stainings, and left lung tissues were collected to determine the hydroxyproline content. RESULTS: Exposure of mice to Nano-Ni resulted in a dose-response increase in acute lung inflammation and injury reflected by increased neutrophil count, CXCL1/KC level, LDH activity, and concentration of total protein in the BALF. The time-response study showed that Nano-Ni-induced acute lung inflammation and injury appeared as early as day 1, peaked at day 3, and attenuated at day 7 post-instillation. Although the neutrophil count, CXCL1/KC level, LDH activity, and concentration of total protein in the BALF dramatically decreased over the time, their levels were still higher than those of the controls even at day 42 post-exposure. Based on the results of the dose- and time-response studies, we chose a dose of 50 µg per mouse of Nano-Ni, and day 3 post-exposure as short-term and day 42 post-exposure as long-term to compare the effects of Nano-Ni, Nano-Ni-P, and Nano-Ni-C on mouse lungs. At day 3 post-exposure, 50 µg per mouse of Nano-Ni caused acute lung inflammation and injury that were reflected by increased neutrophil count, CXCL1/KC level, LDH activity, concentration of total protein, and MMP-2/9 protein levels and activities in the BALF. Nano-Ni exposure also caused increased MMP-2/9 activities in the mouse lung tissues. Histologically, infiltration of large numbers of neutrophils and macrophages in the alveolar space and interstitial tissues was observed in mouse lungs exposed to Nano-Ni. Nano-Ni-P exposure caused similar acute lung inflammation and injury as Nano-Ni. However, exposure to Nano-Ni-C only caused mild acute lung inflammation and injury. At day 42 post-exposure, Nano-Ni caused extensive interstitial fibrosis and proliferation of interstitial cells with inflammatory cells infiltrating the alveolar septa and alveolar space. Lung fibrosis was also observed in Nano-Ni-P-exposed lungs, but to a much lesser degree. Only slight or no lung fibrosis was observed in Nano-Ni-C-exposed lungs. Nano-Ni and Nano-Ni-P, but not Nano-Ni-C, caused significantly elevated levels of TBARS in mouse lung tissues and 8-OHdG in mouse lung tissue genomic DNA, suggesting that Nano-Ni and Nano-Ni-P induce lipid peroxidation and oxidative DNA damage in mouse lung tissues, while Nano-Ni-C does not. CONCLUSION: Our results demonstrate that short-term Nano-Ni exposure causes acute lung inflammation and injury, while long-term Nano-Ni exposure causes chronic lung inflammation and fibrosis. Surface modification of Nano-Ni alleviates Nano-Ni-induced pulmonary effects; partially passivated Nano-Ni causes similar effects as Nano-Ni, but the chronic inflammation and fibrosis were at a much lesser degree. Carbon coating significantly alleviates Nano-Ni-induced acute and chronic lung inflammation and injury.


Assuntos
Lesão Pulmonar/induzido quimicamente , Nanopartículas Metálicas/toxicidade , Níquel/química , Animais , Líquido da Lavagem Broncoalveolar , Quimiocina CXCL1/metabolismo , Dano ao DNA , L-Lactato Desidrogenase/metabolismo , Masculino , Nanopartículas Metálicas/química , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Oxirredução , Estresse Oxidativo , Tamanho da Partícula , Pneumonia/induzido quimicamente , Propriedades de Superfície
9.
Part Fibre Toxicol ; 14(1): 38, 2017 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-28923112

RESUMO

BACKGROUND: We and other groups have demonstrated that exposure to cobalt nanoparticles (Nano-Co) caused oxidative stress and inflammation, which have been shown to be strongly associated with genotoxic and carcinogenic effects. However, few studies have reported Nano-Co-induced genotoxic effects in vivo. Here, we propose that Nano-Co may have high genotoxic effects due to their small size and high surface area, which have high capacity for causing oxidative stress and inflammation. METHODS: gpt delta transgenic mice were used as our in vivo study model. They were intratracheally instilled with 50 µg per mouse of Nano-Co. At day 1, 3, 7 and 28 after exposure, bronchoalveolar lavage (BAL) was performed and the number of neutrophils, CXCL1/KC level, LDH activity and concentration of total protein in the BAL fluid (BALF) were determined. Mouse lung tissues were collected for H&E staining, and Ki-67, PCNA and γ-H2AX immunohistochemical staining. 8-OHdG level in the genomic DNA of mouse lungs was determined by an OxiSelect™ Oxidative DNA Damage ELISA Kit, and mutant frequency and mutation spectrum in the gpt gene were also determined in mouse lungs at four months after Nano-Co exposure by 6-TG selection, colony PCR, and DNA sequencing. RESULTS: Exposure of mice to Nano-Co (50 µg per mouse) resulted in extensive acute lung inflammation and lung injury which were reflected by increased number of neutrophils, CXCL1/KC level, LDH activity and concentration of total protein in the BALF, and infiltration of large amount of neutrophils and macrophages in the alveolar space and interstitial tissues. Increased immunostaining of cell proliferation markers, Ki-67 and PCNA, and the DNA damage marker, γ-H2AX, was also observed in bronchiolar epithelial cells and hyperplastic type II pneumocytes in mouse lungs at day 7 after Nano-Co exposure. At four months after exposure, extensive interstitial fibrosis and proliferation of interstitial cells with inflammatory cells infiltrating the alveolar septa were observed. Moreover, Nano-Co caused increased level of 8-OHdG in genomic DNA of mouse lung tissues. Nano-Co also induced a much higher mutant frequency as compared to controls, and the most common mutation was G:C to T:A transversion, which may be explained by Nano-Co-induced increased formation of 8-OHdG. CONCLUSION: Our study demonstrated that exposure to Nano-Co caused oxidative stress, lung inflammation and injury, and cell proliferation, which further resulted in DNA damage and DNA mutation. These findings have important implications for understanding the potential health effects of nanoparticle exposure.


Assuntos
Cobalto/toxicidade , Dano ao DNA , Exposição por Inalação/efeitos adversos , Lesão Pulmonar/induzido quimicamente , Mutagênicos/toxicidade , Nanopartículas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Proliferação de Células/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Lesão Pulmonar/genética , Lesão Pulmonar/patologia , Masculino , Camundongos Transgênicos , Mutação , Estresse Oxidativo/genética , Tamanho da Partícula , Pentosiltransferases/genética , Propriedades de Superfície
10.
J Virol ; 89(8): 4126-42, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25631083

RESUMO

UNLABELLED: PA-X is a newly discovered protein that decreases the virulence of the 1918 H1N1 virus in a mouse model. However, the role of PA-X in the pathogenesis of highly pathogenic avian influenza viruses (HPAIV) of the H5N1 subtype in avian species is totally unknown. By generating two PA-X-deficient viruses and evaluating their virulence in different animal models, we show here that PA-X diminishes the virulence of the HPAIV H5N1 strain A/Chicken/Jiangsu/k0402/2010 (CK10) in mice, chickens, and ducks. Expression of PA-X dampens polymerase activity and virus replication both in vitro and in vivo. Using microarray analysis, we found that PA-X blunts the global host response in chicken lungs, markedly downregulating genes associated with the inflammatory and cell death responses. Correspondingly, a decreased cytokine response was recapitulated in multiple organs of chickens and ducks infected with the wild-type virus relative to those infected with the PA-X-deficient virus. In addition, the PA-X protein exhibits antiapoptotic activity in chicken and duck embryo fibroblasts. Thus, our results demonstrated that PA-X acts as a negative virulence regulator and decreases virulence by inhibiting viral replication and the host innate immune response. Therefore, we here define the role of PA-X in the pathogenicity of H5N1 HPAIV, furthering our understanding of the intricate pathogenesis of influenza A virus. IMPORTANCE: Influenza A virus (IAV) continues to pose a huge threat to global public health. Eight gene segments of the IAV genome encode as many as 17 proteins, including 8 main viral proteins and 9 accessory proteins. The presence of these accessory proteins may further complicate the pathogenesis of IAV. PA-X is a newly identified protein in segment 3 that acts to decrease the virulence of the 1918 H1N1 virus in mice by modulating host gene expression. Our study extends these functions of PA-X to H5N1 HPAIV. We demonstrated that loss of PA-X expression increases the virulence and replication of an H5N1 virus in mice and avian species and alters the host innate immune and cell death responses. Our report is the first to delineate the role of the novel PA-X protein in the pathogenesis of H5N1 viruses in avian species and promotes our understanding of H5N1 HPAIV.


Assuntos
Galinhas , Interações Hospedeiro-Patógeno/genética , Virus da Influenza A Subtipo H5N1/metabolismo , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Aviária/virologia , Proteínas Repressoras/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética , Animais , Sequência de Bases , Western Blotting , Fracionamento Celular , Linhagem Celular , Cães , Patos , Imunofluorescência , Humanos , Influenza Aviária/metabolismo , Luciferases , Camundongos , Análise em Microsséries , Dados de Sequência Molecular , Mutação/genética , Proteínas Repressoras/genética , Análise de Sequência de DNA , Proteínas não Estruturais Virais/genética
11.
Toxicol Appl Pharmacol ; 298: 9-18, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26952014

RESUMO

Chlorine is a commonly used, reactive compound to which humans can be exposed via accidental or intentional release resulting in acute lung injury. Formulations of rolipram (a phosphodiesterase inhibitor), triptolide (a natural plant product with anti-inflammatory properties), and budesonide (a corticosteroid), either neat or in conjunction with poly(lactic:glycolic acid) (PLGA), were developed for treatment of chlorine-induced acute lung injury by intramuscular injection. Formulations were produced by spray-drying, which generated generally spherical microparticles that were suitable for intramuscular injection. Multiple parameters were varied to produce formulations with a wide range of in vitro release kinetics. Testing of selected formulations in chlorine-exposed mice demonstrated efficacy against key aspects of acute lung injury. The results show the feasibility of developing microencapsulated formulations that could be used to treat chlorine-induced acute lung injury by intramuscular injection, which represents a preferred route of administration in a mass casualty situation.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Budesonida/uso terapêutico , Cloro/toxicidade , Diterpenos/uso terapêutico , Descoberta de Drogas/métodos , Exposição por Inalação/efeitos adversos , Fenantrenos/uso terapêutico , Rolipram/uso terapêutico , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Budesonida/administração & dosagem , Budesonida/sangue , Química Farmacêutica , Diterpenos/administração & dosagem , Diterpenos/sangue , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Compostos de Epóxi/administração & dosagem , Compostos de Epóxi/sangue , Compostos de Epóxi/uso terapêutico , Injeções Intramusculares , Masculino , Camundongos Endogâmicos , Microscopia Eletrônica de Varredura , Fenantrenos/administração & dosagem , Fenantrenos/sangue , Rolipram/administração & dosagem , Rolipram/sangue , Propriedades de Superfície
12.
Med Microbiol Immunol ; 205(4): 381-95, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27289459

RESUMO

PA-X is a novel discovered accessory protein encoded by the PA mRNA. Our previous study demonstrated that PA-X decreases the virulence of a highly pathogenic H5N1 strain A/Chicken/Jiangsu/k0402/2010 in mice. However, the underlying mechanism of virulence attenuation associated with PA-X is still unknown. In this study, we compared two PA-X-deficient mutant viruses and the parental virus in terms of induction of pathology and manipulation of host response in the mouse lung, stimulation of cell death and PA nuclear accumulation. We first found that down-regulated PA-X expression markedly aggravated the acute lung injury of the infected mice early on day 1 post-infection (p.i.). We then determined that loss of PA-X expression induced higher levels of cytokines, chemokines and complement-derived peptides (C3a and C5a) in the lung, especially at early time point's p.i. In addition, in vitro assays showed that the PA-X-deficient viruses enhanced cell death and increased expression of reactive oxygen species (ROS) in mammalian cells. Moreover, we also found that PA nuclear accumulation of the PA-X-null viruses accelerated in MDCK cells. These results demonstrate that PA-X decreases the level of complement components, ROS, cell death and inflammatory response, which may together contribute to the alleviated lung injury and the attenuation of the virulence of H5N1 virus in mice.


Assuntos
Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/virologia , Virus da Influenza A Subtipo H5N1/crescimento & desenvolvimento , Virus da Influenza A Subtipo H5N1/imunologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Proteínas Repressoras/imunologia , Proteínas não Estruturais Virais/imunologia , Animais , Morte Celular , Proteínas do Sistema Complemento/análise , Citocinas/análise , Modelos Animais de Doenças , Cães , Feminino , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Pulmão/patologia , Células Madin Darby de Rim Canino , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/análise , Proteínas Repressoras/deficiência , Proteínas não Estruturais Virais/deficiência
13.
J Appl Toxicol ; 36(4): 586-95, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26179980

RESUMO

Epidemiological studies and animal experiments have shown that individuals with preexisting diseases, such as diabetes mellitus (DM), are more susceptible to particulate matter (PM)-related cardiovascular diseases. However, the underlying mechanisms are still unclear. We hypothesized that PM and high glucose combined would cause enhanced effects on activation of monocytes and p38 mitogen-activated protein kinase (MAPK) by inducing oxidative stress, which would further activate matrix metalloproteinases (MMPs). Human monocytes U937 were used to test the effects of urban particulate matter (U-PM) and high glucose. The results showed that exposure of monocytes to non-toxic doses of U-PM alone caused generation of reactive oxygen species (ROS), increased phosphorylation of p38, and activation of monocytes which was reflected by up-regulation of MMP-2, MMP-9 and proinflammatory cytokines IL-1ß and IL-8 expression and increased activity of pro-MMP-2 and pro-MMP-9. These effects were enhanced significantly when cells were exposed to U-PM in a high-glucose environment. Our results also showed that pre-treatment of cells with ROS scavengers or inhibitors abolished U-PM and high glucose-induced increased phosphorylation of p38. Up-regulation of pro-MMP-2 and pro-MMP-9 activity by U-PM in the setting of high glucose level was dramatically attenuated by treatment of cells with the p38-specific inhibitor, SB203580. These results suggest that activation of MMPs by U-PM with high glucose is partly through p38 phosphorylation that is induced by oxidative stress. Our findings may have important implications in understanding the potential health effects of PM on susceptible populations such as those with DM.


Assuntos
Glucose/metabolismo , Monócitos/efeitos dos fármacos , Material Particulado/toxicidade , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Gelatinases/genética , Gelatinases/metabolismo , Humanos , Imidazóis/farmacologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Piridinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Células U937 , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Am J Physiol Lung Cell Mol Physiol ; 308(2): L168-78, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25398987

RESUMO

Chlorine is a toxic gas used in a variety of industrial processes and is considered a chemical threat agent. High-level chlorine exposure causes acute lung injury, but the long-term effects of acute chlorine exposure are unclear. Here we characterized chronic pulmonary changes following acute chlorine exposure in mice. A/J mice were exposed to 240 parts per million-hour chlorine or sham-exposed to air. Chlorine inhalation caused sloughing of bronchial epithelium 1 day after chlorine exposure, which was repaired with restoration of a pseudostratified epithelium by day 7. The repaired epithelium contained an abnormal distribution of epithelial cells containing clusters of club or ciliated cells rather than the uniformly interspersed pattern of these cells in unexposed mice. Although the damaged epithelium in A/J mice was repaired rapidly, and minimal airway fibrosis was observed, chlorine-exposed mice developed pneumonitis characterized by infiltration of alveoli with neutrophils and prominent, large, foamy macrophages. Levels of CXCL1/KC, CXCL5/LPS-induced CXC chemokine, granulocyte colony-stimulating factor, and VEGF in bronchoalveolar (BAL) fluid from chlorine-exposed mice showed steadily increasing trends over time. BAL protein levels were increased on day 4 and remained elevated out to day 28. The number of bacteria cultured from lungs of chlorine-exposed mice 4 wk after exposure was not increased compared with sham-exposed mice, indicating that the observed pneumonitis was not driven by bacterial infection of the lung. The results indicate that acute chlorine exposure may cause chronic abnormalities in the lungs despite rapid repair of injured epithelium.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Cloro/toxicidade , Pulmão/patologia , Mucosa Respiratória/patologia , Lesão Pulmonar Aguda/terapia , Administração por Inalação , Animais , Líquido da Lavagem Broncoalveolar/química , Quimiocina CXCL1/metabolismo , Quimiocina CXCL5/metabolismo , Citocinas/biossíntese , Células Epiteliais/citologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Inflamação/induzido quimicamente , Inflamação/patologia , Pulmão/microbiologia , Macrófagos/patologia , Camundongos , Pneumonia , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Environ Toxicol ; 30(4): 490-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24277352

RESUMO

The increased development and use of nanoparticles in various fields may lead to increased exposure, directly affecting human health. Our current knowledge of the health effects of metal nanoparticles such as cobalt and titanium dioxide (Nano-Co and Nano-TiO2 ) is limited but suggests that some metal nanoparticles may cause genotoxic effects including cell cycle arrest, DNA damage, and apoptosis. The growth arrest and DNA damage-inducible 45α protein (Gadd45α) has been characterized as one of the key players in the cellular responses to a variety of DNA damaging agents. The aim of this study was to investigate the alteration of Gadd45α expression in mouse embryo fibroblasts (PW) exposed to metal nanoparticles and the possible mechanisms. Non-toxic doses of Nano-Co and Nano-TiO2 were selected to treat cells. Our results showed that Nano-Co caused a dose- and time-dependent increase in Gadd45α expression, but Nano-TiO2 did not. To investigate the potential pathways involved in Nano-Co-induced Gadd45α up-regulation, we measured the expression of hypoxia inducible factor 1α (HIF-1α) in PW cells exposed to Nano-Co and Nano-TiO2 . Our results showed that exposure to Nano-Co caused HIF-1α accumulation in the nucleus. In addition, hypoxia inducible factor 1α knock-out cells [HIF-1α (-/-)] and its wild-type cells [HIF-1α (+/+)] were used. Our results demonstrated that Nano-Co caused a dose- and time-dependent increase in Gadd45α expression in wild-type HIF-1α (+/+) cells, but only a slight increase in HIF-1α (-/-) cells. Pre-treatment of PW cells with heat shock protein 90 inhibitor, 17-(Allylamino)-17-demethoxygeldanamycin (17-AAG), prior to exposure to Nano-Co significantly abolished Nano-Co-induced Gadd45α expression. These results suggest that HIF-1α accumulation may be partially involved in the increased Gadd45α expression in cells exposed to Nano-Co. These findings may have important implications for understanding the potential health effects of metal nanoparticle exposure.


Assuntos
Proteínas de Ciclo Celular/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Nanopartículas Metálicas/toxicidade , Proteínas Nucleares/genética , Animais , Células Cultivadas , Cobalto/toxicidade , Dano ao DNA , Relação Dose-Resposta a Droga , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos , Camundongos , Regulação para Cima/efeitos dos fármacos
16.
J Virol ; 87(20): 11063-75, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23926340

RESUMO

Most highly pathogenic avian influenza A viruses cause only mild clinical signs in ducks, serving as an important natural reservoir of influenza A viruses. However, we isolated two H5N1 viruses that are genetically similar but differ greatly in virulence in ducks. A/Chicken/Jiangsu/k0402/2010 (CK10) is highly pathogenic, whereas A/Goose/Jiangsu/k0403/2010 (GS10) is low pathogenic. To determine the genetic basis for the high virulence of CK10 in ducks, we generated a series of single-gene reassortants between CK10 and GS10 and tested their virulence in ducks. Expression of the CK10 PA or hemagglutinin (HA) gene in the GS10 context resulted in increased virulence and virus replication. Conversely, inclusion of the GS10 PA or HA gene in the CK10 background attenuated the virulence and virus replication. Moreover, the PA gene had a greater contribution. We further determined that residues 101G and 237E in the PA gene contribute to the high virulence of CK10. Mutations at these two positions produced changes in virulence, virus replication, and polymerase activity of CK10 or GS10. Position 237 plays a greater role in determining these phenotypes. Moreover, the K237E mutation in the GS10 PA gene increased PA nuclear accumulation. Mutant GS10 viruses carrying the CK10 HA gene or the PA101G or PA237E mutation induced an enhanced innate immune response. A sustained innate response was detected in the brain rather than in the lung and spleen. Our results suggest that the PA and HA gene-mediated high virus replication and the intense innate immune response in the brain contribute to the high virulence of H5N1 virus in ducks.


Assuntos
Encéfalo/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Imunidade Inata , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Aviária/patologia , Carga Viral , Fatores de Virulência/metabolismo , Animais , Encéfalo/imunologia , Análise Mutacional de DNA , Modelos Animais de Doenças , Patos , Engenharia Genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Influenza Aviária/virologia , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Vírus Reordenados/genética , Vírus Reordenados/imunologia , Vírus Reordenados/isolamento & purificação , Vírus Reordenados/patogenicidade , Proteínas Virais/genética , Proteínas Virais/metabolismo , Virulência , Fatores de Virulência/genética , Replicação Viral
17.
Am J Physiol Lung Cell Mol Physiol ; 304(2): L92-102, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23171502

RESUMO

Chlorine is a reactive gas that is considered a chemical threat agent. Humans who develop acute lung injury from chlorine inhalation typically recover normal lung function; however, a subset can experience chronic airway disease. To examine pathological changes following chlorine-induced lung injury, mice were exposed to a single high dose of chlorine, and repair of the lung was analyzed at multiple times after exposure. In FVB/NJ mice, chlorine inhalation caused pronounced fibrosis of larger airways that developed by day 7 after exposure and was associated with airway hyperreactivity. In contrast, A/J mice had little or no airway fibrosis and had normal lung function at day 7. Unexposed FVB/NJ mice had less keratin 5 staining (basal cell marker) than A/J mice in large intrapulmonary airways where epithelial repair was poor and fibrosis developed after chlorine exposure. FVB/NJ mice had large areas devoid of epithelium on day 1 after exposure leading to fibroproliferative lesions on days 4 and 7. A/J mice had airways covered by squamous keratin 5-stained cells on day 1 that transitioned to a highly proliferative reparative epithelium by day 4 followed by the reappearance of ciliated and Clara cells by day 7. The data suggest that lack of basal cells in the large intrapulmonary airways and failure to effect epithelial repair at these sites are factors contributing to the development of airway fibrosis in FVB/NJ mice. The observed differences in susceptibility to chlorine-induced airway disease provide a model in which mechanisms and treatment of airway fibrosis can be investigated.


Assuntos
Cloro/toxicidade , Fibrose/induzido quimicamente , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Líquido da Lavagem Broncoalveolar/citologia , Cloro/efeitos adversos , Colágeno/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pneumopatias , Masculino , Camundongos
18.
Toxicol Appl Pharmacol ; 272(2): 408-13, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23800689

RESUMO

Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury. We previously developed a chlorine inhalation model in which mice develop epithelial injury, neutrophilic inflammation, pulmonary edema, and impaired pulmonary function. This model was used to evaluate nine corticosteroids for the ability to inhibit chlorine-induced neutrophilic inflammation. Two of the most potent corticosteroids in this assay, mometasone and budesonide, were investigated further. Mometasone or budesonide administered intraperitoneally 1h after chlorine inhalation caused a dose-dependent inhibition of neutrophil influx in lung tissue sections and in the number of neutrophils in lung lavage fluid. Budesonide, but not mometasone, reduced the levels of the neutrophil attractant CXCL1 in lavage fluid 6h after exposure. Mometasone or budesonide also significantly inhibited pulmonary edema assessed 1 day after chlorine exposure. Chlorine inhalation resulted in airway hyperreactivity to inhaled methacholine, but neither mometasone nor budesonide significantly affected this parameter. The results suggest that mometasone and budesonide may represent potential treatments for chemical-induced lung injury.


Assuntos
Anti-Inflamatórios/uso terapêutico , Budesonida/uso terapêutico , Cloro/toxicidade , Glucocorticoides/uso terapêutico , Pneumonia/prevenção & controle , Pregnadienodiois/uso terapêutico , Edema Pulmonar/prevenção & controle , Animais , Anti-Inflamatórios/administração & dosagem , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Budesonida/administração & dosagem , Glucocorticoides/administração & dosagem , Camundongos , Camundongos Endogâmicos , Furoato de Mometasona , Infiltração de Neutrófilos/imunologia , Pneumonia/induzido quimicamente , Pneumonia/imunologia , Pneumonia/patologia , Pregnadienodiois/administração & dosagem , Edema Pulmonar/induzido quimicamente , Edema Pulmonar/imunologia , Edema Pulmonar/patologia
19.
Environ Pollut ; 329: 121670, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080518

RESUMO

With the rapid development of nanotechnology, the potential adverse health effects of nanoparticles have been caught more attention and become global concerns. However, the underlying mechanisms in metal nanoparticle-induced toxic effects are still largely obscure. In this study, we investigated whether exposure to nickel nanoparticles (Nano-Ni) and titanium dioxide nanoparticles (Nano-TiO2) would alter autophagy and apoptosis levels in normal human bronchial epithelial BEAS-2B cells and the underlying mechanisms involved in this process. Our results showed that the expressions of autophagy- and apoptosis-associated proteins were dysregulated in cells exposed to Nano-Ni. However, exposure to the same doses of Nano-TiO2 had no significant effects on these proteins. In addition, exposure to Nano-Ni, but not Nano-TiO2, led to nuclear accumulation of HIF-1α and decreased phosphorylation of mTOR in BEAS-2B cells. Inhibition of HIF-1α by CAY10585 abolished Nano-Ni-induced decreased phosphorylation of mTOR, while activation of mTOR by MHY1485 did not affect Nano-Ni-induced nuclear accumulation of HIF-1α. Furthermore, both HIF-1α inhibition and mTOR activation abolished Nano-Ni-induced autophagy but enhanced Nano-Ni-induced apoptosis. Blockage of autophagic flux by Bafilomycin A1 exacerbated Nano-Ni-induced apoptosis, while activation of autophagy by Rapamycin effectively rescued Nano-Ni-induced apoptosis. In conclusion, our results demonstrated that Nano-Ni exposure caused increased levels of autophagy and apoptosis via the HIF-1α/mTOR signaling axis. Nano-Ni-induced autophagy has a protective role against Nano-Ni-induced apoptosis. These findings provide us with further insight into Nano-Ni-induced toxicity.


Assuntos
Nanopartículas Metálicas , Níquel , Humanos , Níquel/toxicidade , Níquel/metabolismo , Células Epiteliais , Serina-Treonina Quinases TOR/metabolismo , Nanopartículas Metálicas/toxicidade , Apoptose , Autofagia
20.
Chem Res Toxicol ; 25(7): 1402-11, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22559321

RESUMO

Nanotechnology is a fast growing emerging field, the benefits of which are widely publicized. Our current knowledge of the health effects of metal nanoparticles such as nanosized cobalt (Nano-Co) and titanium dioxide (Nano-TiO(2)) is limited but suggests that metal nanoparticles may exert more adverse pulmonary effects as compared with standard-sized particles. To investigate metal nanoparticle-induced genotoxic effects and the potential underlying mechanisms, human lung epithelial A549 cells were exposed to Nano-Co and Nano-TiO(2). Our results showed that exposure of A549 cells to Nano-Co caused reactive oxygen species (ROS) generation that was abolished by pretreatment of cells with ROS inhibitors or scavengers, such as catalase and N-acetyl-L(+)-cysteine (NAC). However, exposure of A549 cells to Nano-TiO(2) did not cause ROS generation. Nano-Co caused DNA damage in A549 cells, which was reflected by an increase in length, width, and DNA content of the comet tail by the Comet assay. Exposure of A549 cells to Nano-Co also caused a dose- and a time-response increased expression of phosphorylated histone H2AX (γ-H2AX), Rad51, and phosphorylated p53. These effects were significantly attenuated when A549 cells were pretreated with catalase or NAC. Nano-TiO(2) did not show these effects. These results suggest that oxidative stress may be involved in Nano-Co-induced DNA damage. To further investigate the pathways involved in the Nano-Co-induced DNA damage, we measured the phosphorylation of ataxia telangiectasia mutant (ATM). Our results showed that phosphorylation of ATM was increased when A549 cells were exposed to Nano-Co, and this effect was attenuated when cells were pretreated with catalase or NAC. Pretreatment of A549 cells with an ATM specific inhibitor, KU55933, significantly abolished Nano-Co-induced DNA damage. Furthermore, pretreatment of A549 cells with ROS scavengers, such as catalase and NAC, significantly abolished Nano-Co-induced increased expression of phosphorylated ATM. Taken together, oxidative stress and ATM activation are involved in Nano-Co-induced DNA damage. These findings have important implications for understanding the potential health effects of metal nanoparticle exposure.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Acetilcisteína/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Catalase/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Cobalto/química , Proteínas de Ligação a DNA/antagonistas & inibidores , Histonas/metabolismo , Humanos , Nanopartículas Metálicas/química , Morfolinas/farmacologia , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pironas/farmacologia , Rad51 Recombinase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Titânio/química , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA