RESUMO
Studies have shown that ruminants constitute reservoirs of Listeria monocytogenes, but little is known about the epidemiology and genetic diversity of this pathogen within farms. Here we conducted a large-scale longitudinal study to monitor Listeria spp. in 19 dairy farms during three consecutive seasons (N = 3251 samples). L. innocua was the most prevalent species, followed by L. monocytogenes. Listeria monocytogenes was detected in 52.6% of farms and more frequently in cattle (4.1%) and sheep (4.5%) than in goat farms (0.2%). Lineage I accounted for 69% of L. monocytogenes isolates. Among animal samples, the most prevalent sublineages (SL) and clonal complexes (CC) were SL1/CC1, SL219/CC4, SL26/CC26 and SL87/CC87, whereas SL666/CC666 was most prevalent in environmental samples. Sixty-one different L. monocytogenes cgMLST types were found, 28% common to different animals and/or surfaces within the same farm and 21% previously reported elsewhere in the context of food and human surveillance. Listeria monocytogenes prevalence was not affected by farm hygiene but by season: higher prevalence was observed during winter in cattle, and during winter and spring in sheep farms. Cows in their second lactation had a higher probability of L. monocytogenes faecal shedding. This study highlights dairy farms as a reservoir for hypervirulent L. monocytogenes.
Assuntos
Listeria monocytogenes , Listeriose , Animais , Bovinos , Células Clonais , Fazendas , Feminino , Listeriose/epidemiologia , Estudos Longitudinais , Ruminantes , OvinosRESUMO
Listeria monocytogenes is a major human and animal foodborne pathogen. However, data from environmental reservoirs remain scarce. Here, we used whole-genome sequencing to characterize Listeria species isolates recovered over 1 year from wild animals in their natural habitats in Spain. Three different Listeria spp. (L. monocytogenes [n = 19], Listeria ivanovii subsp. londoniensis [n = 4], and Listeria innocua [n = 3]) were detected in 23 animal tonsils (9 deer, 14 wild boars) and 2 feeding troughs. No Listeria species was detected in feces. L. monocytogenes was detected in tonsils of 44.4% (8 out of 18) of deer and 40.7% (11 out of 27) of wild boars. L. monocytogenes isolates belonged to 3 different core genome multilocus sequence typing (cgMLST) types (CTs) of 3 distinct sublineages (SL1, SL387, and SL155) from lineages I and II. While cgMLST type L1-SL1-ST1-CT5279 (IVb; clonal complex 1 [CC1]) occurred only in one animal, types L1-SL387-ST388-CT5239 (IVb; CC388) and L2-SL155-ST155-CT1170 (IIa; CC155) were retrieved from multiple animals. In addition, L1-SL387-ST388-CT5239 (IVb; CC388) isolates were collected 1 year apart, revealing their long-term occurrence within the animal population and/or environmental reservoir. The presence of identical L. monocytogenes strains in deer and wild boars suggests contamination from a common food or environmental source, although interhost transmission cannot be excluded. Pathogenicity islands LIPI-1, LIPI-3, and LIPI-4 were present in 100%, 5%, and 79% of the L. monocytogenes isolates, respectively, and all L. monocytogenes lineage II isolates (n = 3) carried SSI-1 stress islands. This study highlights the need for monitoring L. monocytogenes environmental contamination and the importance of tonsils as a possible L. monocytogenes intrahost reservoir.IMPORTANCEListeria monocytogenes is a foodborne bacterial pathogen responsible for listeriosis. Whole-genome sequencing has been extensively used in public health and food industries to characterize circulating Listeria isolates, but genomic data on isolates occurring in natural environments and wild animals are still scarce. Here, we show that wild animals carry pathogenic Listeria and that the same genotypes can be found at different time points in different host species. This work highlights the need of Listeria species monitoring of environmental contamination and the importance of tonsils as a possible L. monocytogenes intrahost reservoir.
Assuntos
Cervos/microbiologia , Listeria/genética , Listeriose/microbiologia , Tonsila Palatina/microbiologia , Sus scrofa/microbiologia , Animais , Fezes/microbiologia , Genoma Bacteriano , Listeria/isolamento & purificação , Listeriose/veterinária , Tipagem de Sequências Multilocus , Filogenia , Sequenciamento Completo do GenomaRESUMO
Sheep estrous synchronization is mainly based on progestagen-impregnated sponges which could cause vaginitis. Several species of Lactobacillus used as probiotics are commonly used in the treatment or prevention of urogenital infections in humans. However, no studies have been performed to analyze the potential use of probiotics to prevent urogenital infections in sheep. A randomized controlled clinical trial was conducted with 21 one-year-old ewes to develop a model of probiotic infusion in vaginal sponges in order to study their influence in ewe's vaginal microbiota, general health status, fertility and prolificity. Synchronization of estrus was based on intravaginal sponges for 14 days. Bacterial communities (Enterobacteriaceae and lactic acid bacteria) were highly fluctuating over time and between animals. The safety of probiotic infusion (mix of Lactobacillus spp. 60% L. crispatus, 20% L. brevis and 20% L. gasseri) in the vagina of healthy ewes was firstly confirmed. Neutrophils were observed in 80% (8/10) of the control ewes compared to 36% (4/11) of the ewes in the probiotic group 2 days after sponge removal (p = 0.056). Fertility in the control and probiotic groups was 60% (6/10) and 91% (10/11), respectively p = 0.097. These results suggest that Lactobacillus spp. infusion in the ewe's vagina does not affect general health status or fertility.