Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 84(2): 257-66, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26333774

RESUMO

The specification of vascular patterning in plants has interested plant biologists for many years. In the last decade a new context has emerged for this interest. Specifically, recent proposals to engineer C(4) traits into C(3) plants such as rice require an understanding of how the distinctive venation pattern in the leaves of C(4) plants is determined. High vein density with Kranz anatomy, whereby photosynthetic cells are arranged in encircling layers around vascular bundles, is one of the major traits that differentiate C(4) species from C(3) species. To identify genetic factors that specify C(4) leaf anatomy, we generated ethyl methanesulfonate- and γ-ray-mutagenized populations of the C(4) species sorghum (Sorghum bicolor), and screened for lines with reduced vein density. Two mutations were identified that conferred low vein density. Both mutations segregated in backcrossed F(2) populations as homozygous recessive alleles. Bulk segregant analysis using next-generation sequencing revealed that, in both cases, the mutant phenotype was associated with mutations in the CYP90D2 gene, which encodes an enzyme in the brassinosteroid biosynthesis pathway. Lack of complementation in allelism tests confirmed this result. These data indicate that the brassinosteroid pathway promotes high vein density in the sorghum leaf, and suggest that differences between C(4) and C(3) leaf anatomy may arise in part through differential activity of this pathway in the two leaf types.


Assuntos
Brassinosteroides/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Sorghum/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Sorghum/metabolismo
2.
J Exp Bot ; 62(9): 3001-10, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21335436

RESUMO

Every day almost one billion people suffer from chronic hunger, and the situation is expected to deteriorate with a projected population growth to 9 billion worldwide by 2050. In order to provide adequate nutrition into the future, rice yields in Asia need to increase by 60%, a change that may be achieved by introduction of the C(4) photosynthetic cycle into rice. The international C(4) Rice Consortium was founded in order to test the feasibility of installing the C(4) engine into rice. This review provides an update on two of the many approaches employed by the C(4) Rice Consortium: namely, metabolic C(4) engineering and identification of determinants of leaf anatomy by mutant screens. The aim of the metabolic C(4) engineering approach is to generate a two-celled C(4) shuttle in rice by expressing the classical enzymes of the NADP-ME C(4) cycle in a cell-appropriate manner. The aim is also to restrict RuBisCO and glycine decarboxylase expression to the bundle sheath (BS) cells of rice in a C(4)-like fashion by specifically down-regulating their expression in rice mesophyll (M) cells. In addition to the changes in biochemistry, two-celled C(4) species show a convergence in leaf anatomy that include increased vein density and reduced numbers of M cells between veins. By screening rice activation-tagged lines and loss-of-function sorghum mutants we endeavour to identify genes controlling these key traits.


Assuntos
Produtos Agrícolas/genética , Engenharia Genética/métodos , Oryza/genética , Fotossíntese/genética , Sorghum/genética , Zea mays/genética , Dióxido de Carbono/metabolismo , Produtos Agrícolas/enzimologia , Produtos Agrícolas/fisiologia , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glicina Desidrogenase (Descarboxilante)/genética , Glicina Desidrogenase (Descarboxilante)/metabolismo , Mutação , Oryza/enzimologia , Oryza/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Sorghum/enzimologia , Sorghum/fisiologia , Zea mays/enzimologia , Zea mays/fisiologia
3.
Funct Plant Biol ; 45(10): 1017-1025, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32291001

RESUMO

To assist with efforts to engineer a C4 photosynthetic pathway into rice, forward-genetic approaches are being used to identify the genes modulating key C4 traits. Currently, a major challenge is how to screen for a variety of different traits in a high-throughput manner. Here we describe a method for identifying C4 mutant plants with increased CO2 compensation points. This is used as a signature for decreased photosynthetic efficiency associated with a loss of C4 function. By exposing plants to a CO2 concentration close to the CO2 compensation point of a wild-type plant, individuals can be identified from measurements of chlorophyll a fluorescence. We use this method to screen a mutant population of the C4 monocot Setaria viridis (L.)P.Beauv. generated using N-nitroso-N-methylurea (NMU). Mutants were identified at a frequency of 1 per 157 lines screened. Forty-six candidate lines were identified and one line with a heritable homozygous phenotype selected for further characterisation. The CO2 compensation point of this mutant was increased to a value similar to that of C3 rice. Photosynthesis and growth was significantly reduced under ambient conditions. These data indicate that the screen was capable of identifying mutants with decreased photosynthetic efficiency. Characterisation and next-generation sequencing of all the mutants identified in this screen may lead to the discovery of novel genes underpinning C4 photosynthesis. These can be used to engineer a C4 photosynthetic pathway into rice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA