Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20847, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012249

RESUMO

In cis and trans geometrical configurations of the polyacetylene molecule, one-dimensional chain is constructed by attaching a number of identical -HC=CH- units one-by-one. We attach as many units as required to obtain the chain of the desired length. In case of a very long polyacetylene chain, which is practically considered infinite in length, a periodic unit is defined, so that its band structure would be calculable. Then, the electronic properties and topological properties of the chain can be predicted. Since experimental synthesis of single-layer polyacetylene chain has lots of limitations, in an alternative approach, emulation of a tight-binding model is used to describe the electron transfer in polyacetylene polymer chain. In case of either synthesis or testing the polyacetylene molecule, it is necessary to improvise a one-to-one correspondence between polyacetylene polymer and topological circuit, which is introduced for the first time in the present study. To this aim, the outputs of density functional theory calculations alongside with the calculations based on the physical chemistry formalisms are used. Here, we observed that the electronic response of the circuit is topologically sustained at frequencies where the coupling was pre-determined via high precision quantum system equivalent topolectrical circuit, as an alternative classical system, to study electron transfer of trans-polyacetylene polymer quantum chain by the precision of one-electron.

2.
Sci Rep ; 13(1): 8259, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217774

RESUMO

Delafossite semiconductors have attracted substantial attention in the field of electro-optics owing to their unique properties and availability of p-type materials that are applicable for solar cells, photocatalysts, photodetectors (PDs) and p-type transparent conductive oxides (TCOs). The CuGaO2 (CGO), as one of the most promising p-type delafossite materials, has appealing electrical and optical properties. In this work, we are able to synthesize CGO with different phases by adopting solid-state reaction route using sputtering followed by heat treatment at different temperatures. By examining the structural properties of CGO thin films, we found that the pure delafossite phase appears at the annealing temperature of 900 °C. While at lower temperatures, delafossite phase can be observed, but along with spinel phase. Furthermore, their structural and physical characterizations indicate an improvement of material-quality at temperatures higher than 600 °C. Thereafter, we fabricated a CGO-based ultraviolet-PD (UV-PD) with a metal-semiconductor-metal (MSM) configuration which exhibits a remarkable performance compared to the other CGO-based UV-PDs and have also investigated the effect of metal contacts on the device performance. We demonstrate that UV-PD with the employment of Cu as the electrical contact shows a Schottky behavior with a responsivity of 29 mA/W with a short response time of 1.8 and 5.9 s for rise and decay times, respectively. In contrast, the UV-PD with Ag electrode has shown an improved responsivity of about 85 mA/W with a slower rise/decay time of 12.2/12.8 s. Our work sheds light on the development of p-type delafossite semiconductor for possible optoelectronics application of the future.

3.
Sci Rep ; 12(1): 18771, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335197

RESUMO

Memristors-competitive microelectronic elements which bring together the electronic sensing and memory effects-potentially are able to respond against physical and chemical effects that influence their sensing capability and memory behavior. However, this young topic is still under debate and needs further attention to be highly responding to or remaining intact against physical effects, e.g., light illumination. To contribute to this scenario, using a composite of two-dimensional graphene or MoS2 doped with meso-structures of metal/metal-oxides of Ag, Cu and Fe family, we presented scalable and printable memristors. The memristive behavior shows strong dependency upon light illumination with a high record of 105 ON/OFF ratio observed so far in 2-terminal systems based on two-dimensional materials or metal oxide structures. Moreover, we found that the memristors can remain stable without illumination, providing a novel approach to use these composites for developing neuromorphic computing circuits. The sensing and memristive mechanisms are explained based on the electronic properties of the materials. Our introduced materials used in the memristor devices can open new routes to achieve high sensing capability and improve memristance of the future microelectronic elements.

4.
Sci Rep ; 12(1): 9809, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697928

RESUMO

We demonstrate a nanostructure layer made of Ni80Fe20 (permalloy:Py) thin film conjugated MoS2 nano-flakes. Layers are made based on a single-step co-deposition of Py and MoS2 from a single solution where ionic Ni and Fe and MoS2 flakes co-exist. Synthesized thin films with MoS2 flakes show increasing coercivity and enhancement in magneto-optical Kerr effect. Ferromagnetic resonance linewidth as well as the damping parameter increaseed significantly compared to that of the Py layer due to the presence of MoS2. Raman spectroscopy and elemental mapping is used to show the quality of MoS2 within the Py thin film. Our synthesis method promises new opportunities for electrochemical production of functional spintronic-based devices.

5.
Sci Rep ; 12(1): 11877, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831478

RESUMO

The interfacial Dzyaloshinskii-Moriya Interaction (iDMI) is an antisymmetric exchange interaction that is induced by the broken inversion symmetry at the interface of, e.g., a ferromagnet/heavy metal. Thus, the presence of iDMI is not expected in symmetrical multilayer stacks of such structures. Here, we use thermal annealing to induce the iDMI in a [Py/Pt]×10 symmetrical multilayer stack. Brillouin light scattering spectroscopy is used to directly evidence the iDMI induction in the annealed sample. Structural characterizations highlight the modified crystallinity as well as a higher surface roughness of the sample after annealing. First principles electronic structure calculations demonstrate a monotonic increase of the iDMI with the interfacial disorder due to the interdiffusion of atoms, depicting the possible origin of the induced iDMI. The presented method can be used to tune the iDMI strength in symmetric multilayers, which are the integral part of racetrack memories, magnonic devices as well as spin-orbitronic elements.

6.
Biosens Bioelectron ; 188: 113334, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34034211

RESUMO

The extraordinary optical properties of porphyrins have inspired their applications in various fields. Herein, we introduce iron porphyrin bio-mimicked graphene quantum dots (Fe-N-GQDs) as a novel paramagnetic and fluorescent label. The Fe-N-GQD was prepared by the mechanochemical mixing of Fe, N, and C sources followed by pyrolysis at high-temperature and next, the solvothermal treatment was performed. The Fe-N sites in graphene matrix, the structural alterations during the solvothermal treatment, the optical properties, and paramagnetic behaviour were studied using FTIR, Raman and X-ray spectroscopies, and Vibrating sample magnetometer. The structural studies revealed that under solvothermal condition, Fe-N doped graphene sheets cut into ultra-small Fe-N-GQDs containing well-dispersed particles with an average diameter of about 2.5 nm. As a result of Fe-N doping, the photoluminescence quantum yield was enhanced to 86% and strong paramagnetic behaviour was observed. Due to the rich oxygen-containing groups at Fe-N-GQDs surface, it has proper sites for bio-conjugation. The bioconjugated Fe-N-GQDs serve as donors in a prominent fluorescence resonance energy transfer system, while graphene oxide acts as an acceptor. The proposed immunosensor was successfully applied for the detection of Salmonella Typhi Vi antigen in real human serum in the concentration range from 1 pg/mL to 1 µg/mL with the detection limit of 1 pg/mL.


Assuntos
Técnicas Biossensoriais , Grafite , Porfirinas , Pontos Quânticos , Humanos , Imunoensaio , Salmonella typhi
7.
Sci Rep ; 11(1): 20334, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645871

RESUMO

Fundamental studies on graphene (Gr) and its real device applications have been affected by unavoidable defects and impurities which are usually present in synthesized Gr. Therefore, post treatment methods on Gr have been an important subject of research followed by the community. Here, we demonstrate a post-treatment of cm-sized CVD-grown graphene in a Radio Frequency-generated low-pressure plasma of methane and hydrogen to remove oxygen functional groups and heal the structural defects. The optimum plasma treatment parameters, such as pressure, plasma power, and the ratio of the gases, are optimized using in-situ optical emission spectroscopy. This way we present an optimal healing condition monitored with in situ OES. A twofold increase in the conductivity of plasma-treated Gr samples was obtained. Plasma treatment conditions give insights into the possible underlying mechanisms, and the method presents an effective way to obtain improved Gr quality.

8.
ACS Appl Mater Interfaces ; 13(39): 46951-46966, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34547200

RESUMO

A novel method of oxide semiconductor nanoparticle synthesis is proposed based on high-voltage, high-current electrical switching discharge (HVHC-ESD). Through a subsecond discharge in the HVHC-ESD method, we successfully synthesized zinc oxide (ZnO) nanorods. Crystallography and optical and electrical analyses approve the high crystal-quality and outstanding optoelectronic characteristics of our synthesized ZnO. The HVHC-ESD method enables the synthesis of ZnO nanorods with ultraviolet (UV) and visible emissions. To demonstrate the effectiveness of our prepared materials, we also fabricated two UV photodetectors based on the ZnO nanorods synthesized using the subsecond HVHC-ESD method. The UV-photodetector test under dark and UV light irradiation also had a promising result with a linear ohmic current-voltage output. In addition to the HVHC-ESD method's excellent tunability for ZnO properties, this method enables the rapid synthesis of ZnO nanorods in open air and water. The results demonstrate the preparation, highlight the synthesis of fine hexagonal-shaped nanorods under a second with controlled oxygen vacancies, and point defects for a wide range of applications in less than a second.

9.
Nanoscale ; 9(5): 1896-1900, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28094381

RESUMO

Spin torque nano-oscillators (STNO) represent a unique class of nano-scale microwave signal generators and offer a combination of intriguing properties, such as nano sized footprint, ultrafast modulation rates, and highly tunable microwave frequencies from 100 MHz to close to 100 GHz. However, their low output power and relatively high threshold current still limit their applicability and must be improved. In this study, we investigate the influence of the bottom Cu electrode thickness (tCu) in nano-contact STNOs based on Co/Cu/NiFe GMR stacks and with nano-contact diameters ranging from 60 to 500 nm. Increasing tCu from 10 to 70 nm results in a 40% reduction of the threshold current, an order of magnitude higher microwave output power, and close to two orders of magnitude better power conversion efficiency. Numerical simulations of the current distribution suggest that these dramatic improvements originate from a strongly reduced lateral current spread in the magneto-dynamically active region.

10.
Nat Commun ; 7: 11209, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27088301

RESUMO

Static and dynamic magnetic solitons play a critical role in applied nanomagnetism. Magnetic droplets, a type of non-topological dissipative soliton, can be nucleated and sustained in nanocontact spin-torque oscillators with perpendicular magnetic anisotropy free layers. Here, we perform a detailed experimental determination of the full droplet nucleation boundary in the current-field plane for a wide range of nanocontact sizes and demonstrate its excellent agreement with an analytical expression originating from a stability analysis. Our results reconcile recent contradicting reports of the field dependence of the droplet nucleation. Furthermore, our analytical model both highlights the relation between the fixed layer material and the droplet nucleation current magnitude, and provides an accurate method to experimentally determine the spin transfer torque asymmetry of each device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA