Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Pharm Dev Technol ; 29(7): 719-726, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39046222

RESUMO

Dwell time is an important parameter responsible for the material deformation and the mechanical and biopharmaceutical properties of the tablet. Thus, it is widely used for scale-up purposes. The geometric dwell time (GDT) can be assumed based on the shape of the punch head and the diameter and speed of the turret. This research is aimed to compare compaction simulator-recorded dwell time according to force (DTF) and the GDT calculated for the simulated rotary tablet press using the microcrystalline cellulose and calcium phosphate mixtures (CEOLUS™ UF-711 and DI-CAFOS® A60) in different proportions. Tablets were prepared, and DTF was analyzed with a compaction simulator (STYL'One Nano and Alix software) upon simulating a small rotary press at 70 rpm and a compression pressure of 10-50 kN (100-500 MPa). While GDT comprised of 14.4 ms, DTF was compression force and formulation dependent. The differences between the DTF values of the formulations decreased as the compression force increased, which was most pronounced at compression forces of 10 and 15 kN.


Assuntos
Fosfatos de Cálcio , Celulose , Excipientes , Comprimidos , Comprimidos/química , Fosfatos de Cálcio/química , Celulose/química , Excipientes/química , Composição de Medicamentos/métodos , Fatores de Tempo , Pressão , Química Farmacêutica/métodos
2.
Drug Dev Ind Pharm ; 48(9): 425-437, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36082906

RESUMO

OBJECTIVE: The aim of this study was to use an alternative granulation technique, solventless roll compaction, and to investigate the effect of the roll compaction pressure on the properties of granules and high-drug-loaded (80%, w/w) immediate release piracetam tablets. SIGNIFICANCE: Piracetam is commonly manufactured as high drug-loaded tablets by wet granulation with an aqueous binder solution. Due to its high solubility in water, the wet granulation process is largely susceptible to processing methods and can induce the uncontrolled polymorphic transition of piracetam as well as convert it into mono- and di-hydrates. METHODS: The blends, comprising piracetam, Kollidon® 30, and Avicel® PH-101 were roll compacted at 4, 5 and 13 MPa hydraulic pressure and calibrated using an industrial roll compactor. The resultant granules milled and raw piracetam was investigated with DSC. The resultant granules are mixed with Ac-Di-Sol®, Aerosil® 200 Pharma, and magnesium stearate to prepare tablets using an industrial tablet press at the same compression force and 25, 65, and 100 rpm. The obtained tablets were film coated with an aqueous dispersion of Opadry® II using a pilot-scale solid-wall pan coater. RESULTS: Roll compaction pressure influenced the polymorphic composition of piracetam, the granule properties and tablet mixture in relation to morphology, particle size, flowability, bulk and tapped density, as well as tablet hardness, tablet friability, disintegration, and dissolution. CONCLUSION: This study showed that roll compaction can be successfully used for the preparation of highly water-soluble, highly drug-loaded piracetam film-coated tablets avoiding wet granulation pitfalls.


Assuntos
Piracetam , Comprimidos , Excipientes , Tamanho da Partícula , Água
3.
Pharm Res ; 38(7): 1297-1306, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34152536

RESUMO

PURPOSE: The purpose of this study was to correlate the gel strength of swollen matrix tablets with their in vitro robustness against agitation intensity and applied mechanical forces. Five commercial products, i.e. Glucophage®, Alfuzosin®, Tromphyllin®, Preductal® MR and Quetiapin® formulated as water-soluble/erodible matrix tablets were investigated. METHODS: Effect of agitation speed (50-150 rpm) on drug release, hydration/erosion and gel strength was investigated using USP paddle apparatus II. The gel strength of matrix tablets during dissolution at different conditions was characterized by a texture analyzer. RESULTS: Commercial tablets formulated with HPMC of higher viscosity, such as K15M or K100M, demonstrated the gel strength in swollen state >0.02 MPa. In this case, the release mechanism was predominantly diffusional and, therefore, not affected by stirring speed and mechanical stress. In contrast, the Quetiapin® matrix tablet, formulated with HPMC K 4 M in amount of approx. 25%, demonstrated the gel strength dropped below 0.02 MPa after 6 h of release. In this case, the drug was predominantly released via erosional mechanism and very susceptible to stirring speed. CONCLUSION: Sufficient gel strength of swollen tablets is an important prerequisite for unchanged in vitro performance in consideration of mechanical stress.


Assuntos
Composição de Medicamentos/métodos , Géis/química , Comprimidos/química , Química Farmacêutica , Liberação Controlada de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Estresse Mecânico , Viscosidade , Água/química
4.
AAPS PharmSciTech ; 22(5): 188, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34159427

RESUMO

Omeprazole is a widely used over-the-counter (20 mg) proton pump inhibitor, usually supplied as oral enteric-coated pellets intended to release at pH 5.5 and higher; however, it is sensitive to acidic pH. The likelihood of elevated gastric pH in practice is very high for patients; thus, the aim of this study was to investigate the effect of elevated pH on the performance of commercial omeprazole pellets. Commercial enteric-coated delayed-release pellets were tested with water uptake-weight loss (WU-WL) test at pH range between 1.2 and 4.5 in addition to "gastric" (pH 1.2 or 4.5) and "intestinal" (pH 7.4) phase dissolution tests. The range of physical characteristics of pellets was determined with a single pellet size and sedimentation time measurement, followed by the application of modified Stokes' Law equation. The coefficient of variation of pellet size and density, and volume-density determination coefficient (R2) as descriptors of coating thickness and microstructure variability, degree of ionisation of enteric polymers, aqueous solubility and molecular weight of plasticisers have been found useful to explain commercial delayed-release pellets behaviour during WU-WL and dissolution test. Investigated commercial delayed-release pellets demonstrated pH-dependent WU-WL results. "Gastric phase" dissolution testing of pellets at pH 4.5 showed the highest omeprazole degradation (48.1%) for Nosch Labs, intermediate values of dose loss (23.4% and 17.1%) for Teva and UQUIFA delayed-release pellets, respectively. Lab Liconsa pellets have been found as the least susceptible (3.2% of dose loss). Additionally, "gastric phase" dissolution test at pH 4.5 significantly influenced omeprazole release during the "intestinal phase". The risk of inadequate therapy associated with intake of investigated enteric-coated delayed-release pellets at elevated gastric pH has been found as minimal for Lab Liconsa and has increased from UQUIFA and Teva to Nosh Labs pellets.


Assuntos
Medicamentos Genéricos/química , Absorção Gastrointestinal/efeitos dos fármacos , Omeprazol/química , Patentes como Assunto , Inibidores da Bomba de Prótons/química , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Medicamentos Genéricos/farmacocinética , Absorção Gastrointestinal/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Masculino , Omeprazol/farmacocinética , Inibidores da Bomba de Prótons/farmacocinética , Solubilidade , Comprimidos com Revestimento Entérico , Adulto Jovem
5.
Pharm Res ; 37(11): 227, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33094368

RESUMO

PURPOSE: When establishing IVIVC, a special problem arises by interpretation of averaged in vivo profiles insight of considerable individual variations in term of time and number of mechanical stress events in GI-tract. The objective of the study was to investigate and forecast the effect of mechanical stress on in vivo behavior in human of hydrophilic matrix tablets. METHODS: Dissolution profiles for the marketed products were obtained at different conditions (stirring speed, single- or repeatable mechanical stress applied) and convoluted into C-t profiles. Vice versa, published in vivo C-t profiles of the products were deconvoluted into absorption profiles and compared with dissolution profiles by similarity factor. RESULTS: Investigated hydrophilic matrix tablets varied in term of their resistance against hydrodynamic stress or single stress during the dissolution. Different scenarios, including repeatable mechanical stress, were investigated on mostly prone Seroquel® XR 50 mg. None of the particular scenarios fits to the published in vivo C-t profile of Seroquel® XR 50 mg representing, however, the average of individual profiles related to scenarios differing by number, frequency and time of contraction stress. When different scenarios were combined in different proportions, the profiles became closer to the original in vivo profile including a burst between 4 and 5 h, probably, due to stress-events in GI-tract. CONCLUSION: For establishing IVIVC of oral dosage forms susceptible mechanical stress, a comparison of the deconvoluted individual in vivo profiles with in vitro profiles of different dissolution scenarios can be recommended.


Assuntos
Preparações de Ação Retardada/metabolismo , Liberação Controlada de Fármacos/fisiologia , Comprimidos/metabolismo , Disponibilidade Biológica , Trato Gastrointestinal/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Solubilidade , Estresse Mecânico
6.
AAPS PharmSciTech ; 21(1): 3, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31713006

RESUMO

Suspension of microparticles in an easy-to-swallow liquid is one approach to develop sustained-release formulations for children and patients with swallowing difficulties. However, to date production of sustained-release microparticles at the industrial scale has proven to be challenging. The aim of this investigation was to develop an innovative concept in coating sustained-release microparticles using industrial scalable Wurster fluidised bed to produce oral liquid suspensions. Microcrystalline cellulose cores (particle size <150 µm) were coated with Eudragit® NM 30 D and Eudragit® RS/RL 30 D aqueous dispersions using a fluidised bed coater. A novel approach of periodic addition of a small quantity (0.1% w/w) of dry powder glidant, magnesium stearate, to the coating chamber via an external port was applied throughout the coating process. This method significantly increased coating production yield from less than 50% to up to 99% compared to conventional coating process without the dry powder glidant. Powder rheology tests showed that dry powder glidants increased the tapped density and decreased the cohesive index of coated microparticles. Reproducible microencapsulation of a highly water-soluble drug, metoprolol succinate, was achieved, yielding coated microparticles less than 200 µm in size with 20-h sustained drug release, suitable for use in liquid suspensions. The robust, scalable technology presented in this study offers an important solution to the long-standing challenges of formulating sustained-release dosage forms suitable for children and older people with swallowing difficulties.


Assuntos
Administração Oral , Transtornos de Deglutição/complicações , Preparações de Ação Retardada/química , Composição de Medicamentos/métodos , Nanopartículas , Idoso , Celulose , Criança , Excipientes , Humanos , Metoprolol/administração & dosagem , Tamanho da Partícula , Ácidos Polimetacrílicos , Pós , Reologia , Ácidos Esteáricos
7.
Drug Dev Ind Pharm ; 43(9): 1548-1556, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28478689

RESUMO

The objective of this study was to develop delivery systems for taste masking based on multiparticulates coated with Kollicoat® Smartseal 30D formulated as liquid oral suspensions. Coating of particles containing bitter drugs with Kollicoat® Smartseal reduced drug leaching into aqueous medium, especially when increasing pH, therefore can be used for the formulation of liquid dosage forms. Application of an intermediate layer of ion exchange resins between drug layer and coating can further decrease drug leaching into aqueous vehicle that is beneficial in terms of taste masking. Using optimized compositions of liquid vehicles such as addition of sugar alcohols and ion exchange resin, reconstitutable or ready-to-use liquid dosage forms with micropellets can be developed with bitter taste protection after redispersion lasting longer than 3 weeks, which exceeds the usual period of application.


Assuntos
Excipientes/química , Resinas de Troca Iônica/química , Polivinil/administração & dosagem , Suspensões/química , Administração Oral , Química Farmacêutica , Composição de Medicamentos , Polivinil/química , Suspensões/administração & dosagem , Percepção Gustatória
8.
Drug Discov Today ; : 104214, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39428083

RESUMO

Ex vivo drug permeability testing across gastrointestinal (GI) membranes is crucial in drug discovery and oral drug delivery. It is a reliable method for drugs with good solubility, but it poses challenges for poorly soluble drugs, which are common in development pipelines today. Although enabling formulations increase the apparent solubility in the GI compartment (dissolution vessel or permeation chamber's donor compartment), maintaining solubilized drug in the acceptor compartment during ex vivo testing remains largely unresolved. This review compiles and critically evaluates the diverse compositions of acceptor media used in ex vivo permeability studies for poorly soluble drugs, highlighting this significant yet underexplored aspect of pharmaceutical science. An algorithm is proposed for selecting solubility-enhancing additives for the acceptor media in ex vivo permeability studies of poorly soluble drugs.

9.
Pharmaceutics ; 16(8)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39204445

RESUMO

The deformulation stage of original drug products, which includes the quantification of critical excipients, is crucial for the successful development of generic drug products of solid dosage form. Sodium lauryl sulphate (SLS) belongs to the group of critical excipients due to its influence on the bioavailability of drugs, such as metformin. The purpose of this work is to carry out a feasibility study in order to develop a simple, economical, and robust analytical method for the quantification of SLS in metformin-containing tablets after their dissolution in water. Firstly, SLS is extracted with chloroform in acidic conditions, followed by the addition of methylene blue (MB) in order to form a SLS-MB ion pair, which is then measured photometrically at a wavelength of 651 nm. Additionally, interference from matrix components (excipients and APIs) was assessed, and it was found that metformin also forms a blue complex; therefore, this specific extraction method was developed. Other matrix components did not interfere with SLS determination. This method shows a well-estimated precision of 3.3% and accuracy of 5%, a calibration linearity of R2 = 0.99990, and a working range of 0.38 µg/mL to 10 µg/mL of SLS in water. The midpoint of the calibration graph corresponds to the concentration of SLS obtained by dissolving a single tablet in 1 L of water. This method seems appropriate for total SLS determination in tablets and can be applicable for deformulation.

10.
Pharmaceutics ; 16(7)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39065642

RESUMO

Compaction pressure can induce an undesirable solid-state polymorphic transition in drugs, fragmentation, loss of coated pellet integrity, and the decreased viability and vitality of microorganisms. Thus, the excipients with increased plasticity can be considered as an option to decrease the undesirable effects of compaction pressure. This study aims to increase the plasticity (to reduce the mean yield pressure; Py) of dried microcrystalline cellulose (MCC) by loading it with a specially selected plasticizer. Diethyl citrate (DEC), water, and glycerol were the considered plasticizers. Computation of solubility parameters was used to predict the miscibility of MCC with plasticizers (possible plasticization effect). Plasticizer-loaded MCC spheres with 5.0 wt.% of water, 5.2 wt.% of DEC, and 4.2 wt.% glycerol were obtained via the solvent method, followed by solvent evaporation. Plasticizer-loaded formulations were characterised by TGA, DSC, pXRD, FTIR, pressure-displacement profiles, and in-die Heckel plots. Py was derived from the in-die Heckel analysis and was used as a plasticity parameter. In comparison with non-plasticized MCC (Py = 136.5 MPa), the plasticity of plasticizer-loaded formulations increased (and Py decreased) from DEC (124.7 MPa) to water (106.6 MPa) and glycerol (99.9 MPa), and that was in full accordance with the predicted miscibility likeliness order based on solubility parameters. Therefore, water and glycerol were able to decrease the Py of non-plasticized MCC spheres by 16.3 and 30.0%, respectively. This feasibility study showed the possibility of modifying the plasticity of MCC by loading it with a specially selected plasticizer.

11.
Pharmaceutics ; 16(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38543256

RESUMO

Using microcrystalline cellulose (MCC) with plastic behaviour and calcium phosphate anhydrous (CaHPO4) with brittle behaviour under compaction is very popular in the pharmaceutical industry for achieving desirable structural-mechanical properties of tablet formulations. Thus, mixtures of specific grades of MCC and CaHPO4 were tested in volume proportions of 100-0, 75-25, 50-50, 25-75, and 0-100 at a constant weight-by-weight concentration of sodium stearyl fumarate lubricant, utilizing a state-of-the-art benchtop compaction simulator (STYL'One Nano). Tablet formulations were prepared at 100, 150, 250, 350, 450, and 500 MPa, and characterized by tabletability profile, ejection force profile, proportion-tensile strength relationship, proportion-porosity relationship, pressure-displacement, and elastic recovery profiles, as well as by in-/out-of-die Heckel plots and yield pressures. Interestingly, the 25-75 formulation demonstrated a two-stage out-of-die Heckel plot and was additionally investigated with X-ray micro-computed tomography (µCT). By post-processing the µCT data, the degree of brittle CaHPO4 particles falling apart, along with the increasing compression pressure, was quantified by means of the surface area to volume (S/V) ratio. For the 25-75 formulation, the first stage (up to 150 MPa) and second stage (above the 150 MPa) of the out-of-die Heckel plot could be attributed to predominant MCC and CaHPO4 deformation, respectively.

12.
Pharmaceutics ; 16(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38794249

RESUMO

The bitter drug, warfarin, has a narrow therapeutic index (NTI) and is used in paediatrics and geriatrics. The aim of this feasibility study was to formulate the taste-masked warfarin-containing pellets to be applicable for dose personalisation and to improve patient compliance, as well as to investigate the effect of the core type (PharSQ® Spheres M, CELPHERE™ CP-507, and NaCl) on the warfarin release from the Kollicoat® Smartseal taste-masking-coated pellets. The cores were successfully drug-loaded and coated in a fluid-bed coater with a Wurster insert. An increase in particle size and particle size distribution was observed by optical microscopy. In saliva-simulated pH, at the Kollicoat® Smartseal level of 2 mg/cm2, none of the pellets demonstrated drug release, confirming their efficient taste-masking. However, in a stomach-simulated pH, a faster drug release was observed from PharSQ® Spheres M- and CELPHERE™ CP-507-coated pellets in comparison with NaCl cores. Additional experiments allowed us to explain the slower drug release from NaCl-containing pellets because of the salting-out effect. Despite the successful taste masking, the drug release from pellets was relatively slow (not more than 91% per 60 min), allowing for further formulation improvements.

13.
J Pharm Sci ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972546

RESUMO

The quantification of both polymer and drug during the dissolution of an amorphous solid dispersion (ASD) in aqueous media arouses great interest and may aid in the formulation. However, the available quantification methods for polymer excipients are limited, expensive, and challenging compared to drugs. In this work, a size exclusion chromatography method (HPLC-SEC) was developed and validated to determine the concentration of a frequently used polymer excipient, Soluplus® (Sol). In order to develop a method for the quantification of dissolved Soluplus®, two methods (SEC-UV and SEC-RID) with two injection volumes were tested with standard solutions of three different batches of Soluplus. The developed HPLC-SEC-UV method showed acceptable linearity (R2 > 0.9990) for all batches of Soluplus, good accuracies above a concentration of 0.1 mg/mL (coefficient of variation < 2 %), relatively good precision at a concentration of 0.1 mg/mL (coefficient of variation < 2.5 %), and high recoveries at a concentration of 0.75 mg/mL (coefficient of variation < 0.5 %). The presence of Felodipine (Fel) and Lumefantrine (Lum) in the liquid media did not interfere with Soluplus quantification. The use of various surfactants, such as Tween® 80, Tween® 20, Span® 80, Span® 20, Kolliphor® TPGS, and sodium lauryl sulphate at a low concentration (0.005 mg/mL) did not show any effect on Soluplus® and did not interfere with Soluplus® quantification with any of the Soluplus batches. The addition of lithium bromide (LiBr) to the mobile phase within a concentration range of 0.05-1.0 M did not improve Soluplus® quantification.

14.
Drug Deliv Transl Res ; 14(1): 177-190, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37454029

RESUMO

Vat photopolymerisation (VP) three-dimensional printing (3DP) has attracted great attention in many different fields, such as electronics, pharmaceuticals, biomedical devices and tissue engineering. Due to the low availability of biocompatible photocurable resins, its application in the healthcare sector is still limited. In this work, we formulate photocurable resins based on urethane dimethacrylate (UDMA) combined with three different difunctional methacrylic diluents named ethylene glycol dimethacrylate (EGDMA), di(ethylene glycol) dimethacrylate (DEGDMA) or tri(ethylene glycol) dimethacrylate (TEGDMA). The resins were tested for viscosity, thermal behaviour and printability. After printing, the 3D printed specimens were measured with a digital calliper in order to investigate their accuracy to the digital model and tested with FT-IR, TGA and DSC. Their mechanical properties, contact angle, water sorption and biocompatibility were also evaluated. The photopolymerizable formulations investigated in this work achieved promising properties so as to be suitable for tissue engineering and other biomedical applications.


Assuntos
Resinas Compostas , Estereolitografia , Resinas Compostas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Impressão Tridimensional
15.
Pharmaceutics ; 15(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37111721

RESUMO

The aim of this feasibility study was to investigate the possibility of producing industrial-scale relevant, robust, high drug-loaded (90.9%, w/w) 100 mg dose immediate-release tablets of isoniazid and simultaneously meet the biowaiver requirements. With an understanding of the real-life constrictions on formulation scientists during product development for the generic industry, this study was done considering a common set of excipients and manufacturing operations, as well as paying special attention to the industrial-scale high-speed tableting process as one of the most critical manufacturing operations. The isoniazid substance was not applicable for the direct compression method. Thus, the selection of granulation method was logically justified, and it was fluid-bed granulated with an aqueous solution of Kollidon® 25, mixed with excipients, and tableted with a rotary tablet press (Korsch XL 100) at 80 rpm (80% of the maximum speed) in the compaction pressure range 170-549 MPa monitoring of ejection/removal forces, tablet weight uniformity, thickness, and hardness. Adjusting the main compression force, the Heckel plot, manufacturability, tabletability, compactability, and compressibility profiles were analysed to choose the main compression force that resulted in the desirable tensile strength, friability, disintegration, and dissolution profile. The study showed that highly robust drug-loaded isoniazid tablets with biowaiver requirements compliance can be prepared with a common set of excipients and manufacturing equipment/operations incl. the industrial-scale high-speed tableting process.

16.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37895878

RESUMO

Flavonoids are hydroxylated polyphenols that are widely distributed in plants with diverse health benefits. Despite their popularity, the bioavailability of flavonoids is often overlooked, impacting their efficacy and the comparison of products. The study discusses the bioavailability-related physicochemical properties of flavonoids, with a focus on the poorly soluble compounds commonly found in dietary supplements and herbal products. This review sums up the values of pKa, log P, solubility, permeability, and melting temperature of flavonoids. Experimental and calculated data were compiled for various flavonoid subclasses, revealing variations in their physicochemical properties. The investigation highlights the challenges posed by poorly soluble flavonoids and underscores the need for enabling formulation approaches to enhance their bioavailability and therapeutic potential. Compared to aglycones, flavonoid glycosides (with sugar moieties) tend to be more hydrophilic. Most of the reviewed aglycones and glycosides exhibit relatively low log P and high melting points, making them "brick dust" candidates. To improve solubility and absorption, strategies like size reduction, the potential use of solid dispersions and carriers, as well as lipid-based formulations have been discussed.

17.
Int J Pharm ; 616: 121553, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35131354

RESUMO

3D printing (3DP) by fused deposition modelling (FDM) is one of the most extensively developed methods in additive manufacturing. Optimizing printability by improving feedability, nozzle extrusion, and layer deposition is crucial for manufacturing solid oral dosage forms with desirable properties. This work aimed to use HPMCAS (AffinisolTM HPMCAS 716) to prepare filaments for FDM-3DP using hot-melt extrusion (HME). It explored and demonstrated the effect of HME-filament composition and fabrication on printability by evaluating thermal, mechanical, and thermo-rheological properties. It also showed that the HME-Polymer filament composition used in FDM-3DP manufacture of oral solid dosage forms provides a tailored drug release profile. HME (HAAKE MiniLab) and FDM-3DP (MakerBot) were used to prepare HME-filaments and printed objects, respectively. Two diverse ways of improving the mechanical properties of HME-filaments were deduced by changing the formulation to enable feeding through the roller gears of the printer nozzle. These include plasticizing the polymer and adding an insoluble structuring agent (talc) into the formulation. Experimental feedability was predicted using texture analysis results was a function of PEG concentration, and glass-transition temperature (Tg) values of HME-filaments. The effect of high HME screw speed (100 rpm) resulted in inhomogeneity of HME-filament, which resulted in inconsistency of the printer nozzle extrudate and printed layers. The variability of the glass-transition temperature (Tg) of the HME-filament supported by scanning electron microscopy (SEM) images of nozzle extrudates and the lateral wall of the printed tablet helped explain this result. The melt viscosity of HPMCAS formulations was investigated using a capillary rheometer. The high viscosity of unplasticized HPMCAS was concluded to be an additional restriction for nozzle extrusion. The plasticization of HPMCAS and the addition of talc into the formulation were shown to improve thickness consistency of printed layers (using homogeneous HME-filaments). A good correlation (R2 = 0.9546) between the solidification threshold (low-frequency oscillation test determined by parallel-plate rheometer) and Tg of HME-filaments was also established. Drug-loaded and placebo HPMCAS-based formulations were shown to be successfully printed, with the former providing tailored drug release profiles based on variation of internal geometry (infill).


Assuntos
Excipientes , Tecnologia Farmacêutica , Formas de Dosagem , Liberação Controlada de Fármacos , Metilcelulose/análogos & derivados , Impressão Tridimensional , Comprimidos , Tecnologia Farmacêutica/métodos
18.
Diseases ; 9(3)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34562967

RESUMO

In recent years, probiotics have attracted public attention and transformed the social perception of microorganisms, convening a beneficial role/state on human health. With aging, the immune system, body physiology, and intestinal microbiota tend to change unfavorably, resulting in many chronic conditions. The immune-mediated disorders can be linked to intestinal dysbiosis, consequently leading to immune dysfunctions and a cluster of conditions such as asthma, autoimmune diseases, eczema, and various allergies. Probiotic bacteria such as Lactobacillus and Bifidobacterium species are considered probiotic species that have a great immunomodulatory and anti-allergic effect. Moreover, recent scientific and clinical data illustrate that probiotics can regulate the immune system, exert anti-viral and anti-tumoral activity, and shields the host against oxidative stress. Additionally, microbiota programming by probiotic bacteria can reduce and prevent the symptoms of respiratory infections and ameliorate the neurological status in humans. This review describes the most recent clinical findings, including safe probiotic therapies aiming to medicate respiratory infections, allergies, cancer, and neurological disorders due to their physiological interconnection. Subsequently, we will describe the major biological mechanism by which probiotic bacteriotherapy expresses its anti-viral, anti-allergic, anticancer, and neuro-stimulatory effects.

19.
Int J Pharm ; 605: 120818, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34174359

RESUMO

During pandemics and global crises, drug shortages become critical as a result of increased demand, shortages in personnel and lockdown restrictions that disrupt the supply chain. The pharmaceutical industry is therefore moving towards continuous manufacturing instead of conventional batch manufacturing involving numerous steps, that normally occur at different sites. In order to validate the use of large-scale industrial processes, feasibility studies need to be performed using small-scale laboratory equipment. To that end, the scale-up of a continuous process and its effect on the critical quality attributes (CQAs) of the end product were investigated in this work. Hydroxychloroquine Sulphate (HCQS) was used as the model drug, Soluplus® as a model polymeric carrier and both horizontal and vertical twin screw extruders used to undertake this hot melt extrusion (HME) study. Seven formulations were processed using a small-scale horizontal extruder and a pilot-scale vertical extruder at various drug loadings, temperature profiles and screw speeds. When utilising a horizontal extruder, formulations with the highest drug load and processed at the lowest screw speed and temperature had the highest crystallinity with higher drug release rates. Upon scale-up to a vertical extruder, the crystallinity of the HCQS was significantly reduced, with less variation in both crystallinity and release profile across the different extrudates. This study demonstrates improved robustness with the pilot-scale vertical extruder compared to lab-scale horizontal extruder. The reduced variation with the vertical extruder will allow for short increases in production rate, with minimum impact on the CQAs of the final product enabling high-performance continuous manufacturing with minimum waste of raw materials. Finally, this research provides valuable information for the pharmaceutical industry in accessing continuous technologies for the manufacture of pharmaceutical products, allowing for efficient utilisation of resources upon scale-up and mass production during global pandemics and drug shortages.


Assuntos
Tecnologia de Extrusão por Fusão a Quente , Preparações Farmacêuticas , Química Farmacêutica , Composição de Medicamentos , Temperatura Alta , Hidroxicloroquina , Pandemias , Tecnologia Farmacêutica
20.
J Pharm Sci ; 109(8): 2474-2484, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32360661

RESUMO

It is a challenge to safely administer sustained release medicines to patients with dysphagia. Sustained release tablets must not be crushed and multiparticulates with large particle sizes cause gritiness reducing patient acceptability. The aim of this study was to develop "instant" jellies as delivery vehicles incorporating sustained release microparticles for patients with dysphagia. Dry powder mixtures containing gelling agents such as sodium alginate and calcium ions were hydrated in 20 mL of water and formed a jelly texture within 10 min. The "instant" jellies demonstrated comparable properites to commercial "read-to-eat" jellies in appearance, rheological/textural properties and in vitro swallowing performance in an artificial throat model. Gliclazide sustained release microparticles were produced by fluidized bed coating using Eudragit® NM 30 D and achieved 99% production yield and final coated particle size (D50) of 198 ± 4.3 µm. Sustained gliclazide release was achieved over 15 h and the incorporation of the particles into the jellies significantly decreased the drug release rate. This novel drug delivery system offers a patient-centric solution to the long-standing challenge of administering sustained release medicines to patients with dysphagia and can potentially be used for paediatric patients.


Assuntos
Gliclazida , Administração Oral , Criança , Preparações de Ação Retardada , Composição de Medicamentos , Humanos , Tamanho da Partícula , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA