Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
JBMR Plus ; 8(10): ziae091, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39224570

RESUMO

Bone metastases are the most severe and prevalent consequences of prostate cancer (PC), affecting more than 80% of patients with advanced PC. PCBMs generate pain, pathological fractures, and paralysis. As modern therapies increase survival, more patients are suffering from these catastrophic consequences. Radiographically, PCBMs are predominantly osteosclerotic, but the mechanisms of abnormal bone formation and how this pathological increase in bone density is related to fractures are unclear. In this study, we conducted a comprehensive analysis on a cohort of 76 cadaveric PCBM specimens and 12 cancer-free specimens as controls. We used micro-computed tomography to determine 3D organization and quantify bone characteristics, quantitative backscattering electron microscopy to characterize mineral content and details in bone structure, nanoindentation to determine mechanical properties, and histological and immunohistochemical analysis of bone structure and composition. We define 4 PCBM phenotypes: osteolytic, mixed lytic-sclerotic, and 2 subgroups of osteosclerotic lesions-those with residual trabeculae, and others without residual trabeculae. The osteosclerotic lesions are characterized by the presence of abnormal bone accumulated on trabeculae surfaces and within intertrabecular spaces. This abnormal bone is characterized by higher lacunae density, abnormal lacunae morphology, and irregular lacunae orientation. However, mineral content, hardness, and elastic modulus at micron-scale were indistinguishable between this irregular bone and residual trabeculae. The collagen matrix of this abnormal bone presents with irregular organization and a prominent collagen III composition. These characteristics suggest that osteosclerotic PCBMs initiate new bone deposition as woven bone; however, the lack of subsequent bone remodeling, absence of lamellar bone deposition on its surface, and presence of collagen III distinguish this pathologic matrix from conventional woven bone. Although the mineralized matrix retains normal bone hardness and stiffness properties, the lack of fibril anisotropy presents a compromised trabecular structure, which may have clinical implications.

2.
Eur Urol Focus ; 9(2): 371-380, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36244955

RESUMO

BACKGROUND: Hydronephrosis and renal impairment may persist even after relieving an obstruction, particularly in cases of chronic obstruction. Obstruction can cause fibrotic changes of the ureter, potentially contributing to long-term kidney damage. OBJECTIVE: To characterise pathophysiological changes of obstructed ureters with focus on inflammatory responses triggering fibrosis and potential impairment of ureteral function. DESIGN, SETTING, AND PARTICIPANTS: Eighty-eight mice were randomly assigned to unilateral ureteral obstruction (UUO) for 2 d, UUO for 7 d, and UUO for 7 d followed by 8 d of recovery, or a control group (no prior surgical intervention). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Peristaltic rate was determined over 2 min by direct visualisation with a microscope, while hydronephrosis was assessed by ultrasound. Obstructed and contralateral ureters were harvested, and underwent histopathological evaluation. We quantified 44 cytokines/chemokines, and five matrix metalloproteases using Luminex technology. Cell composition was characterised via immunofluorescence. Statistical significance was assessed using Welch analysis of variance, Kruskal-Wallis test, and Dunnett's T3 multiple comparison test. RESULTS AND LIMITATIONS: Obstruction resulted in hydronephrosis and significantly impaired peristalsis. Marked fibrosis was observed in lamina propria, muscle layer, and adventitia. Connective tissue in obstructed ureters showed hyperaemia and leucocyte infiltration. Unsupervised hierarchical clustering demonstrated different cytokine/chemokine patterns between groups. Ureters obstructed for 7 d followed by recovery were notably different from other groups. Inflammatory cytokines, chemoattractants, and matrix metalloproteases increased significantly in obstructed ureters. Contralateral unobstructed ureters showed significantly increased levels of chemokines and matrix metalloproteases. Immunofluorescence confirmed activation of T cells, Th1 and Th2 cells, and M1 macrophages in obstructed and contralateral ureters, and a shift to M2 macrophages following prolonged obstruction. CONCLUSIONS: Ureteral obstruction triggers severe inflammation and fibrosis, which may irreversibly impair ureteral functionality. Function of the unobstructed contralateral ureter may be regulated by a systemic immune response as a result of the obstruction. PATIENT SUMMARY: Here, we studied in more detail the way the ureter responds to being blocked. We conclude that a strong immune response is activated by the blockage, leading to changes in the structure of the ureter possibly impacting function, which may not be reversible. This immune response also spreads to the opposite ureter, possibly allowing it to change its function to compensate for the reduced functionality of the blocked ureter.


Assuntos
Hidronefrose , Obstrução Ureteral , Infecções Urinárias , Camundongos , Animais , Obstrução Ureteral/complicações , Hidronefrose/complicações , Hidronefrose/patologia , Fibrose , Infecções Urinárias/complicações , Citocinas , Inflamação , Metaloproteases
3.
Sci Rep ; 13(1): 5492, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37015949

RESUMO

To explore the pathways and mechanisms driving inflammation and fibrosis in stented ureters. In total, six healthy female pigs underwent cystoscopic unilateral ureteral stent insertion (6 Fr). After 14 days indwelling time, ureteral tissue was harvested in three pigs, while the remaining three pigs had their stents removed, and were recovered for 7 days. Three separate pigs served as controls. Tissue from stented and contralateral ureters was analysed histologically to evaluate tissue remodelling and classify the degree of inflammation and fibrosis, while genome, proteome and immunohistochemistry analysis was performed to assess changes at the transcriptional and translational levels. Finally, immunofluorescence was used to characterize the cell composition of the immune response and pathways involved in inflammation and fibrosis. Statistical analysis was performed using GraphPad Prism and RStudio for Welch ANOVA, Kruskal-Wallis and Dunnett's T3 multiple comparison test. Stents cause significant inflammation and fibrosis of ureters. Gene set enrichment analysis confirmed fibrotic changes and tissue proliferation and suggests that epithelial-mesenchymal transition is a driver of fibrosis. Moreover, IL-6/JAK/STAT and TNFα via NF-κB signalling might contribute to chronic inflammation promoting a profibrotic environment. Immunostaining confirmed epithelial-mesenchymal transition in the urothelium and NF-κB expression in ureters stented for 14 days. Tissue alterations do not fully recover after 7 days. Histological evaluation showed that contralateral, unstented ureters are affected by mild inflammation. Our study showed that stenting has a significant impact on the ureter. Chronic inflammation and epithelial-mesenchymal transition are drivers of fibrosis, potentially impairing ureteral functionality in the long term. Furthermore, we observed mild inflammation in contralateral, unstented ureters.


Assuntos
Ureter , Obstrução Ureteral , Suínos , Feminino , Animais , Ureter/patologia , Urotélio/patologia , NF-kappa B , Stents/efeitos adversos , Inflamação/patologia , Fibrose , Obstrução Ureteral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA