Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Extremophiles ; 21(6): 1119-1132, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29019077

RESUMO

Viruses come in various shapes and sizes, and a number of viruses originate from extremities, e.g. high salinity or elevated temperature. One challenge for studying extreme viruses is to find efficient purification conditions where viruses maintain their infectivity. Asymmetrical flow field-flow fractionation (AF4) is a gentle native chromatography-like technique for size-based separation. It does not have solid stationary phase and the mobile phase composition is readily adjustable according to the sample needs. Due to the high separation power of specimens up to 50 µm, AF4 is suitable for virus purification. Here, we applied AF4 for extremophilic viruses representing four morphotypes: lemon-shaped, tailed and tailless icosahedral, as well as pleomorphic enveloped. AF4 was applied to input samples of different purity: crude supernatants of infected cultures, polyethylene glycol-precipitated viruses and viruses purified by ultracentrifugation. All four virus morphotypes were successfully purified by AF4. AF4 purification of culture supernatants or polyethylene glycol-precipitated viruses yielded high recoveries, and the purities were comparable to those obtained by the multistep ultracentrifugation purification methods. In addition, we also demonstrate that AF4 is a rapid monitoring tool for virus production in slowly growing host cells living in extreme conditions.


Assuntos
Vírus de Archaea/química , Cromatografia/métodos , Vírus de Archaea/metabolismo , Tolerância ao Sal
2.
Nat Commun ; 15(1): 487, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216556

RESUMO

Periodontal disease is a significant burden for oral health, causing progressive and irreversible damage to the support structure of the tooth. This complex structure, the periodontium, is composed of interconnected soft and mineralised tissues, posing a challenge for regenerative approaches. Materials combining silicon and lithium are widely studied in periodontal regeneration, as they stimulate bone repair via silicic acid release while providing regenerative stimuli through lithium activation of the Wnt/ß-catenin pathway. Yet, existing materials for combined lithium and silicon release have limited control over ion release amounts and kinetics. Porous silicon can provide controlled silicic acid release, inducing osteogenesis to support bone regeneration. Prelithiation, a strategy developed for battery technology, can introduce large, controllable amounts of lithium within porous silicon, but yields a highly reactive material, unsuitable for biomedicine. This work debuts a strategy to lithiate porous silicon nanowires (LipSiNs) which generates a biocompatible and bioresorbable material. LipSiNs incorporate lithium to between 1% and 40% of silicon content, releasing lithium and silicic acid in a tailorable fashion from days to weeks. LipSiNs combine osteogenic, cementogenic and Wnt/ß-catenin stimuli to regenerate bone, cementum and periodontal ligament fibres in a murine periodontal defect.


Assuntos
Nanofios , beta Catenina , Animais , Camundongos , Silício/farmacologia , Porosidade , Lítio/farmacologia , Ácido Silícico/farmacologia , Cemento Dentário
3.
Sci Rep ; 12(1): 10851, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761023

RESUMO

Extracellular vesicles (EVs) are nanoparticles found in all biological fluids, capable of transporting biological material around the body. Extensive research into the physiological role of EVs has led to the development of the Minimal Information for Studies of Extracellular Vesicles (MISEV) framework in 2018. This framework guides the standardisation of protocols in the EV field. To date, the focus has been on EVs of human origin. As comparative medicine progresses, there has been a drive to study similarities between diseases in humans and animals. To successfully research EVs in felines, we must validate the application of the MISEV guidelines in this group. EVs were isolated from the plasma of healthy humans and felines. EV characterisation was carried out according to the MISEV guidelines. Human and feline plasma showed a similar concentration of EVs, comparable expression of known EV markers and analogous particle to protein ratios. Mass spectrometry analyses showed that the proteomic signature of EVs from humans and felines were similar. Asymmetrical flow field flow fractionation, showed two distinct subpopulations of EVs isolated from human plasma, whereas only one subpopulation was isolated from feline plasma. Metabolomic profiling showed similar profiles for humans and felines. In conclusion, isolation, and characterisation of EVs from humans and felines show that MISEV2018 guidelines may also be applied to felines. Potential comparative medicine studies of EVs may provide a model for studying naturally occurring diseases in both humans and felines.


Assuntos
Vesículas Extracelulares , Fracionamento por Campo e Fluxo , Animais , Transporte Biológico , Gatos , Humanos , Plasma , Proteômica
4.
Artigo em Inglês | MEDLINE | ID: mdl-30098552

RESUMO

Basic and applied virus research requires specimens that are purified to high homogeneity. Thus, there is much interest in the efficient production and purification of viruses and their subassemblies. Advances in the production steps have shifted the bottle neck of the process to the purification. Nonetheless, the development of purification techniques for different viruses is challenging due to the complex biological nature of the infected cell cultures as well as the biophysical and -chemical differences in the virus particles. We used bacteriophage ϕ6 as a model virus in our attempts to provide a new purification method for enveloped viruses. We compared asymmetrical flow field-flow fractionation (AF4)-based virus purification method to the well-established ultracentrifugation-based purification of ϕ6. In addition, binding of ϕ6 virions to monolithic anion exchange columns was tested to evaluate their applicability in concentrating the AF4 purified specimens. Our results show that AF4 enables one-hour purification of infectious enveloped viruses with specific infectivity of ~1 × 1013 PFU/mg of protein and ~65-95% yields. Obtained purity was comparable with that obtained using ultracentrifugation, but the yields from AF4 purification were 2-3-fold higher. Importantly, high quality virus preparations could be obtained directly from crude cell lysates. Furthermore, when used in combination with in-line light scattering detectors, AF4 purification could be coupled to simultaneous quality control of obtained virus specimen.


Assuntos
Bacteriófago phi 6/isolamento & purificação , Fracionamento por Campo e Fluxo/métodos , Vírion/isolamento & purificação , Pseudomonas syringae/virologia , Ultracentrifugação , Ensaio de Placa Viral , Cultura de Vírus
5.
J Chromatogr A ; 1469: 108-119, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27697294

RESUMO

Detailed biochemical and biophysical characterization of viruses requires viral preparations of high quantity and purity. The optimization of virus production and purification is an essential, but laborious and time-consuming process. Asymmetric flow field flow fractionation (AF4) is an attractive alternative method for virus purification because it is a rapid and gentle separation method that should preserve viral infectivity. Here we optimized the AF4 conditions to be used for purification of a model virus, bacteriophage PRD1, from various types of starting materials. Our results show that AF4 is well suited for PRD1 purification as monitored by virus recovery and specific infectivity. Short analysis time and high sample loads enabled us to use AF4 for preparative scale purification of PRD1. Furthermore, we show that AF4 enables the rapid real-time analysis of progeny virus production in infected cells.


Assuntos
Vírus/isolamento & purificação , Bacteriófago PRD1/isolamento & purificação , Fracionamento por Campo e Fluxo/métodos , Salmonella typhimurium/virologia , Proteínas Virais/análise , Vírion/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA