RESUMO
When electric conductors differ from their mirror image, unusual chiral transport coefficients appear that are forbidden in achiral metals, such as a non-linear electric response known as electronic magnetochiral anisotropy (eMChA)1-6. Although chiral transport signatures are allowed by symmetry in many conductors without a centre of inversion, they reach appreciable levels only in rare cases in which an exceptionally strong chiral coupling to the itinerant electrons is present. So far, observations of chiral transport have been limited to materials in which the atomic positions strongly break mirror symmetries. Here, we report chiral transport in the centrosymmetric layered kagome metal CsV3Sb5 observed via second-harmonic generation under an in-plane magnetic field. The eMChA signal becomes significant only at temperatures below [Formula: see text] 35 K, deep within the charge-ordered state of CsV3Sb5 (TCDW ≈ 94 K). This temperature dependence reveals a direct correspondence between electronic chirality, unidirectional charge order7 and spontaneous time-reversal symmetry breaking due to putative orbital loop currents8-10. We show that the chirality is set by the out-of-plane field component and that a transition from left- to right-handed transport can be induced by changing the field sign. CsV3Sb5 is the first material in which strong chiral transport can be controlled and switched by small magnetic field changes, in stark contrast to structurally chiral materials, which is a prerequisite for applications in chiral electronics.
RESUMO
Intense work studying the ballistic regime of electron transport in two-dimensional systems based on semiconductors and graphene had been thought to have established most of the key experimental facts of the field. In recent years, however, additional forms of ballistic transport have become accessible in the quasi-two-dimensional delafossite metals, whose Fermi wavelength is a factor of 100 shorter than those typically studied in the previous work and whose Fermi surfaces are nearly hexagonal in shape and therefore strongly faceted. This has some profound consequences for results obtained from the classic ballistic transport experiment of studying bend and Hall resistances in mesoscopic squares fabricated from delafossite single crystals. We observe pronounced anisotropies in bend resistances and even a Hall voltage that is strongly asymmetric in magnetic field. Although some of our observations are nonintuitive at first sight, we show that they can be understood within a nonlocal Landauer-Büttiker analysis tailored to the symmetries of the square/hexagonal geometries of our combined device/Fermi surface system. Signatures of nonlocal transport can be resolved for squares of linear dimension of nearly 100 µm, approximately a factor of 15 larger than the bulk mean free path of the crystal from which the device was fabricated.
RESUMO
In this work, we combine two previously incompatible techniques for defining electronic devices: shaping three-dimensional crystals by focused ion beam (FIB), and two-dimensional electrostatic accumulation of charge carriers. The principal challenge for this integration is nanometer-scale surface damage inherent to any FIB-based fabrication. We address this by using a sacrificial protective layer to preserve a selected pristine surface. The test case presented here is accumulation of 2D carriers by ionic liquid gating at the surface of a micron-scale SrTiO3 lamella. Preservation of surface quality is reflected in superconductivity of the accumulated carriers. This technique opens new avenues for realizing electrostatic charge tuning in materials that are not available as large or exfoliatable single crystals, and for patterning the geometry of the accumulated carriers.
RESUMO
The dispersion of charge carriers in a metal is distinctly different from that of free electrons owing to their interactions with the crystal lattice. These interactions may lead to quasiparticles mimicking the massless relativistic dynamics of high-energy particle physics, and they can twist the quantum phase of electrons into topologically non-trivial knots-producing protected surface states with anomalous electromagnetic properties. These effects intertwine in materials known as Weyl semimetals, and in their crystal-symmetry-protected analogues, Dirac semimetals. The latter show a linear electronic dispersion in three dimensions described by two copies of the Weyl equation (a theoretical description of massless relativistic fermions). At the surface of a crystal, the broken translational symmetry creates topological surface states, so-called Fermi arcs, which have no counterparts in high-energy physics or conventional condensed matter systems. Here we present Shubnikov-de Haas oscillations in focused-ion-beam-prepared microstructures of Cd3As2 that are consistent with the theoretically predicted 'Weyl orbits', a kind of cyclotron motion that weaves together Fermi-arc and chiral bulk states. In contrast to conventional cyclotron orbits, this motion is driven by the transfer of chirality from one Weyl node to another, rather than momentum transfer of the Lorentz force. Our observations provide evidence for direct access to the topological properties of charge in a transport experiment, a first step towards their potential application.
RESUMO
In a joint effort utilizing modified sample preparation, microscopy, X-ray diffraction and micro-fabrication, it became possible to prepare single crystals of the "hidden" phase AlCr2 . High-resolution X-ray diffraction analysis is described in detail for two crystals with the similar overall composition, but different degree of disorder, which seems to be the main cause for the differing unit cell parameters. Chemical bonding analysis of AlCr2 in comparison to prototypical MoSi2 shows pronounced differences reflecting the interchange of main group element vs. transition metal as majority component.
Assuntos
Cristalografia por Raios X , Difração de Raios XRESUMO
Broadband, efficient and fast conversion of light to electricity is crucial for sensing and clean energy. The bulk photovoltaic effect (BPVE) is a second-order nonlinear optical effect that intrinsically converts light into electrical current. Here, we demonstrate a large mid-infrared BPVE in microscopic devices of the Weyl semimetal TaAs. This discovery results from combining recent developments in Weyl semimetals, focused-ion beam fabrication and theoretical works suggesting a connection between BPVE and topology. We also present a detailed symmetry analysis that allows us to separate the shift current response from photothermal effects. The magnitude and wavelength range of the assigned shift current may impact optical detectors, clean energy and topology, and demonstrate the utility of Weyl semimetals for practical applications.
RESUMO
Iron pnictides are layered high T(c) superconductors with moderate material anisotropy and thus Abrikosov vortices are expected in the mixed state. Yet, we have discovered a distinct change in the nature of the vortices from Abrikosov-like to Josephson-like in the pnictide superconductor SmFeAs(O,F) with T(c)~48-50 K on cooling below a temperature T*~41-42 K, despite its moderate electronic anisotropy γ~4-6. This transition is hallmarked by a sharp drop in the critical current and accordingly a jump in the flux-flow voltage in a magnetic field precisely aligned along the FeAs layers, indicative of highly mobile vortices. T* coincides well with the temperature where the coherence length ξ(c) perpendicular to the layers matches half of the FeAs-layer spacing. For fields slightly out-of-plane (> 0.1°- 0.15°) the vortices are completely immobilized as well-pinned Abrikosov segments are introduced when the vortex crosses the FeAs layers. We interpret these findings as a transition from well-pinned, slow moving Abrikosov vortices at high temperatures to weakly pinned, fast flowing Josephson vortices at low temperatures. This vortex dynamics could become technologically relevant as superconducting applications will always operate deep in the Josephson regime.
RESUMO
In layered superconductors the order parameter may be modulated within the unit cell, leading to nontrivial modifications of the vortex core if the interlayer coherence length ξ(c)(T) is comparable to the interlayer spacing. In the iron pnictide SmFeAs(O,F) (T(c)≈50 K) this occurs below a crossover temperature T(â)≈41 K, which separates two regimes of vortices: anisotropic Abrikosov-like at high and Josephson-like at low temperatures. Yet in the transition region around T(â), hybrid vortices between these two characteristics appear. Only in this region around T(â) and for magnetic fields well aligned with the FeAs layers, we observe oscillations of the c-axis critical current j(c)(H) periodic in 1/sqrt[H] due to a delicate balance of intervortex forces and interaction with the layered potential. j(c)(H) shows pronounced maxima when a hexagonal vortex lattice is commensurate with the underlying crystal structure. The narrow temperature window in which oscillations are observed suggests a significant suppression of the order parameter between the superconducting layers in SmFeAs(O,F), despite its low coherence length anisotropy (γ(ξ)≈3-5).
RESUMO
Spontaneously broken symmetries are at the heart of many phenomena of quantum matter and physics more generally. However, determining the exact symmetries that are broken can be challenging due to imperfections such as strain, in particular when multiple electronic orders are competing. This is exemplified by charge order in some kagome systems, where evidence of nematicity and flux order from orbital currents remains inconclusive due to contradictory measurements. Here we clarify this controversy by fabricating highly symmetric samples of a member of this family, CsV3Sb5, and measuring their transport properties. We find that a measurable anisotropy is absent at any temperature in the unperturbed material. However, a pronounced in-plane transport anisotropy appears when either weak magnetic fields or strains are present. A symmetry analysis indicates that a perpendicular magnetic field can indeed lead to in-plane anisotropy by inducing a flux order coexisting with more conventional bond order. Our results provide a unifying picture for the controversial charge order in kagome metals and highlight the need for materials control at the microscopic scale in the identification of broken symmetries.
RESUMO
Diode effects are of great interest for both fundamental physics and modern technologies. Electrical diode effects (nonreciprocal transport) have been observed in Weyl systems. Optical diode effects arising from the Weyl fermions have been theoretically considered but not probed experimentally. Here, we report the observation of a nonlinear optical diode effect (NODE) in the magnetic Weyl semimetal CeAlSi, where the magnetization introduces a pronounced directionality in the nonlinear optical second-harmonic generation (SHG). We demonstrate a six-fold change of the measured SHG intensity between opposite propagation directions over a bandwidth exceeding 250 meV. Supported by density-functional theory, we establish the linearly dispersive bands emerging from Weyl nodes as the origin of this broadband effect. We further demonstrate current-induced magnetization switching and thus electrical control of the NODE. Our results advance ongoing research to identify novel nonlinear optical/transport phenomena in magnetic topological materials and further opens new pathways for the unidirectional manipulation of light.
RESUMO
The quest to improve transparent conductors balances two key goals: increasing electrical conductivity and increasing optical transparency. To improve both simultaneously is hindered by the physical limitation that good metals with high electrical conductivity have large carrier densities that push the plasma edge into the ultra-violet range. Technological solutions reflect this trade-off, achieving the desired transparencies only by reducing the conductor thickness or carrier density at the expense of a lower conductance. Here we demonstrate that highly anisotropic crystalline conductors offer an alternative solution, avoiding this compromise by separating the directions of conduction and transmission. We demonstrate that slabs of the layered oxides Sr2RuO4 and Tl2Ba2CuO6+δ are optically transparent even at macroscopic thicknesses >2 µm for c-axis polarized light. Underlying this observation is the fabrication of out-of-plane slabs by focused ion beam milling. This work provides a glimpse into future technologies, such as highly polarized and addressable optical screens.
RESUMO
The crystal symmetry of a material dictates the type of topological band structures it may host, and therefore symmetry is the guiding principle to find topological materials. Here we introduce an alternative guiding principle, which we call 'quasi-symmetry'. This is the situation where a Hamiltonian has an exact symmetry at lower-order that is broken by higher-order perturbation terms. This enforces finite but parametrically small gaps at some low-symmetry points in momentum space. Untethered from the restraints of symmetry, quasi-symmetries eliminate the need for fine-tuning as they enforce that sources of large Berry curvature will occur at arbitrary chemical potentials. We demonstrate that a quasi-symmetry in the semi-metal CoSi stabilizes gaps below 2 meV over a large near-degenerate plane that can be measured in the quantum oscillation spectrum. The application of in-plane strain breaks the crystal symmetry and gaps the degenerate point, observable by new magnetic breakdown orbits. The quasi-symmetry, however, does not depend on spatial symmetries and hence transmission remains fully coherent. These results demonstrate a class of topological materials with increased resilience to perturbations such as strain-induced crystalline symmetry breaking, which may lead to robust topological applications as well as unexpected topology beyond the usual space group classifications.
RESUMO
In an idealized infinite crystal, the material properties are constrained by the symmetries of the unit cell. The point-group symmetry is broken by the sample shape of any finite crystal, but this is commonly unobservable in macroscopic metals. To sense the shape-induced symmetry lowering in such metals, long-lived bulk states originating from an anisotropic Fermi surface are needed. Here we show how a strongly facetted Fermi surface and the long quasiparticle mean free path present in microstructures of PdCoO2 yield an in-plane resistivity anisotropy that is forbidden by symmetry on an infinite hexagonal lattice. We fabricate bar-shaped transport devices narrower than the mean free path from single crystals using focused ion beam milling, such that the ballistic charge carriers at low temperatures frequently collide with both of the side walls that define the channel. Two symmetry-forbidden transport signatures appear: the in-plane resistivity anisotropy exceeds a factor of 2, and a transverse voltage appears in zero magnetic field. Using ballistic Monte Carlo simulations and a numerical solution of the Boltzmann equation, we identify the orientation of the narrow channel as the source of symmetry breaking.
RESUMO
With the discovery of new superconducting materials, such as the iron pnictides, exploring their potential for applications is one of the foremost tasks. Even if the critical temperature T(c) is high, intrinsic electronic properties might render applications difficult, particularly if extreme electronic anisotropy prevents effective pinning of vortices and thus severely limits the critical current density, a problem well known for cuprates. Although many questions concerning microscopic electronic properties of the iron pnictides have been successfully addressed and estimates point to a very high upper critical field, their application potential is less clear. Thus, we focus here on the critical currents, their anisotropy and the onset of electrical dissipation in high magnetic fields up to 65 T. Our detailed study of the transport properties of SmFeAsO(0.7)F(0.25) single crystals reveals a promising combination of high (>2 x 10(6) A cm(-2)) and nearly isotropic critical current densities along all crystal directions. This favourable intragrain current transport in SmFeAs(O, F), which shows the highest T(c) of 54 K at ambient pressure, is a crucial requirement for possible applications. Essential in these experiments are four-probe measurements on focused-ion-beam-cut single crystals with a sub-square-micrometre cross-section, with current along and perpendicular to the crystallographic c axis.
RESUMO
We report a scanning superconducting quantum interference device (SQUID) microscope in a cryogen-free dilution refrigerator with a base temperature at the sample stage of at least 30 mK. The microscope is rigidly mounted to the mixing chamber plate to optimize thermal anchoring of the sample. The microscope housing fits into the bore of a superconducting vector magnet, and our design accommodates a large number of wires connecting the sample and sensor. Through a combination of vibration isolation in the cryostat and a rigid microscope housing, we achieve relative vibrations between the SQUID and the sample that allow us to image with micrometer resolution over a 150 µm range while the sample stage temperature remains at base temperature. To demonstrate the capabilities of our system, we show images acquired simultaneously of the static magnetic field, magnetic susceptibility, and magnetic fields produced by a current above a superconducting micrometer-scale device.
RESUMO
As conductors in electronic applications shrink, microscopic conduction processes lead to strong deviations from Ohm's law. Depending on the length scales of momentum conserving (lMC) and relaxing (lMR) electron scattering, and the device size (d), current flows may shift from ohmic to ballistic to hydrodynamic regimes. So far, an in situ methodology to obtain these parameters within a micro/nanodevice is critically lacking. In this context, we exploit Sondheimer oscillations, semi-classical magnetoresistance oscillations due to helical electronic motion, as a method to obtain lMR even when lMR â« d. We extract lMR from the Sondheimer amplitude in WP2, at temperatures up to T ~ 40 K, a range most relevant for hydrodynamic transport phenomena. Our data on µm-sized devices are in excellent agreement with experimental reports of the bulk lMR and confirm that WP2 can be microfabricated without degradation. These results conclusively establish Sondheimer oscillations as a quantitative probe of lMR in micro-devices.
RESUMO
The phase offset of quantum oscillations is commonly used to experimentally diagnose topologically nontrivial Fermi surfaces. This methodology, however, is inconclusive for spin-orbit-coupled metals where π-phase-shifts can also arise from non-topological origins. Here, we show that the linear dispersion in topological metals leads to a T2-temperature correction to the oscillation frequency that is absent for parabolic dispersions. We confirm this effect experimentally in the Dirac semi-metal Cd3As2 and the multiband Dirac metal LaRhIn5. Both materials match a tuning-parameter-free theoretical prediction, emphasizing their unified origin. For topologically trivial Bi2O2Se, no frequency shift associated to linear bands is observed as expected. However, the π-phase shift in Bi2O2Se would lead to a false positive in a Landau-fan plot analysis. Our frequency-focused methodology does not require any input from ab-initio calculations, and hence is promising for identifying correlated topological materials.
RESUMO
Whereas electron-phonon scattering relaxes the electron's momentum in metals, a perpetual exchange of momentum between phonons and electrons may conserve total momentum and lead to a coupled electron-phonon liquid. Such a phase of matter could be a platform for observing electron hydrodynamics. Here we present evidence of an electron-phonon liquid in the transition metal ditetrelide, NbGe2, from three different experiments. First, quantum oscillations reveal an enhanced quasiparticle mass, which is unexpected in NbGe2 with weak electron-electron correlations, hence pointing at electron-phonon interactions. Second, resistivity measurements exhibit a discrepancy between the experimental data and standard Fermi liquid calculations. Third, Raman scattering shows anomalous temperature dependences of the phonon linewidths that fit an empirical model based on phonon-electron coupling. We discuss structural factors, such as chiral symmetry, short metallic bonds, and a low-symmetry coordination environment as potential design principles for materials with coupled electron-phonon liquid.
RESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.