Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Mol Psychiatry ; 26(7): 2753-2763, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33767349

RESUMO

The serotonergic system in the human brain modulates several physiological processes, and altered serotonergic neurotransmission has been implicated in the neuropathology of several psychiatric disorders. The study of serotonergic neurotransmission in psychiatry has long been restricted to animal models, but advances in cell reprogramming technology have enabled the generation of serotonergic neurons from patient-induced pluripotent stem cells (iPSCs). While iPSC-derived human serotonergic neurons offer the possibility to study serotonin (5-HT) release and uptake, particularly by 5-HT-modulating drugs such as selective serotonin reuptake inhibitors (SSRIs), a major limitation is the inability to reliably quantify 5-HT secreted from neurons in vitro. Herein, we address this technical gap via a novel sensing technology that couples 5-HT-specific DNA aptamers into nanopores (glass nanopipettes) with orifices of ~10 nm to detect 5-HT in complex neuronal culture medium with higher selectivity, sensitivity, and stability than existing methods. The 5-HT aptamers undergo conformational rearrangement upon target capture and serve as gatekeepers of ionic flux through the nanopipette opening. We generated human serotonergic neurons in vitro and detected secreted 5-HT using aptamer-coated nanopipettes in a low nanomolar range, with the possibility of detecting significantly lower (picomolar) concentrations. Furthermore, as a proof of concept, we treated human serotonergic neurons in vitro with the SSRI citalopram and detected a significant increase in extracellular 5-HT using the aptamer-modified nanopipettes. We demonstrate the utility of such methods for 5-HT detection, raising the possibility of fast quantification of neurotransmitters secreted from patient-derived live neuronal cells.


Assuntos
Neurônios Serotoninérgicos , Serotonina , Animais , Encéfalo , Citalopram/farmacologia , Humanos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
2.
Nanotechnology ; 33(26)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35240592

RESUMO

Additive manufacturing can realize almost any designed geometry, enabling the fabrication of innovative products for advanced applications. Local electrochemical plating is a powerful approach for additive manufacturing of metal microstructures; however, previously reported data have been mostly obtained with copper, and only a few cases have been reported with other elements. In this study, we assessed the ability of fluidic force microscopy to produce Ni-Mn and Ni-Co alloy structures. Once the optimal deposition potential window was determined, pillars with relatively smooth surfaces were obtained. The printing process was characterized by printing rates in the range of 50-60 nm s-1. Cross-sections exposed by focused ion beam showed highly dense microstructures, while the corresponding face scan with energy-dispersive x-ray spectroscopy spectra revealed a uniform distribution of alloy components.

3.
Nano Lett ; 21(21): 9093-9101, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34699726

RESUMO

Nanoscale 3D printing is attracting attention as an alternative manufacturing technique for a variety of applications from electronics and nanooptics to sensing, nanorobotics, and energy storage. The constantly shrinking critical dimension in state-of-the-art technologies requires fabrication of complex conductive structures with nanometer resolution. Electrochemical techniques are capable of producing impurity-free metallic conductors with superb electrical and mechanical properties, however, true nanoscale resolution (<100 nm) remained unattainable. Here, we set new a benchmark in electrochemical 3D printing. By employing nozzles with dimensions as small as 1 nm, we demonstrate layer-by-layer manufacturing of 25 nm diameter voxels. Full control of the printing process allows adjustment of the feature size on-the-fly, printing tilted, and overhanging structures. On the basis of experimental evidence, we estimate the limits of electrochemical 3D printing and discuss the origins of this new resolution frontier.


Assuntos
Eletrônica , Impressão Tridimensional , Condutividade Elétrica , Técnicas Eletroquímicas
4.
Anal Chem ; 93(8): 4033-4041, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33596063

RESUMO

We report artificial nanopores in the form of quartz nanopipettes with ca. 10 nm orifices functionalized with molecular recognition elements termed aptamers that reversibly recognize serotonin with high specificity and selectivity. Nanoscale confinement of ion fluxes, analyte-specific aptamer conformational changes, and related surface charge variations enable serotonin sensing. We demonstrate detection of physiologically relevant serotonin amounts in complex environments such as neurobasal media, in which neurons are cultured in vitro. In addition to sensing in physiologically relevant matrices with high sensitivity (picomolar detection limits), we interrogate the detection mechanism via complementary techniques such as quartz crystal microbalance with dissipation monitoring and electrochemical impedance spectroscopy. Moreover, we provide a novel theoretical model for structure-switching aptamer-modified nanopipette systems that supports experimental findings. Validation of specific and selective small-molecule detection, in parallel with mechanistic investigations, demonstrates the potential of conformationally changing aptamer-modified nanopipettes as rapid, label-free, and translatable nanotools for diverse biological systems.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanoporos , Técnicas de Microbalança de Cristal de Quartzo , Serotonina
5.
Anal Chem ; 90(19): 11453-11460, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30148616

RESUMO

We report here an advanced approach for simultaneous and independent submicroscale imaging of local surface charge and topography using microchanneled cantilevers, also known as FluidFM nanopipette probes. These hollow cantilevers with a 300 nm opening are employed for ion current measurements that provide access to the local properties of the electrical double layer using the phenomenon of ion current rectification, while also taking advantage of the force sensing capabilities for accurate probe vertical positioning and topography imaging. The independent nature of this atomic force microscope (AFM) feedback opens up a possibility to significantly increase the sensitivity for probing local surface charges in a wider range of salt concentrations, especially in electrolytes of low ionic strength (below 10 mM), where classical local ion conductance measurements with glass nanopipettes would suffer from inaccuracies and instabilities, but where the electrical double layer extends further into the liquid medium and has stronger effect on the measured ion currents for charge imaging. We demonstrate that the measurements with FluidFM do not compromise the positioning accuracy and enable accurate and simultaneous topographical and charge imaging in contact mode (similar to AFM) at high scanning rates, approaching thousands of pixels per second, therefore overtaking state-of-the-art techniques for charge mapping by at least 2 orders of magnitude (the probes reach translation rates of 120 µm s-1 equating to 2 ms per image pixel). We also reveal experimentally the physical limit of this high speed scanning, constrained by the rate of ion redistribution in surface-induced rectification required for double layer sensing and charge mapping.

6.
J Am Chem Soc ; 138(9): 3152-60, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26871001

RESUMO

Scanning ion conductance microscopy (SICM) is demonstrated to be a powerful technique for quantitative nanoscale surface charge mapping of living cells. Utilizing a bias modulated (BM) scheme, in which the potential between a quasi-reference counter electrode (QRCE) in an electrolyte-filled nanopipette and a QRCE in bulk solution is modulated, it is shown that both the cell topography and the surface charge present at cellular interfaces can be measured simultaneously at high spatial resolution with dynamic potential measurements. Surface charge is elucidated by probing the properties of the diffuse double layer (DDL) at the cellular interface, and the technique is sensitive at both low-ionic strength and under typical physiological (high-ionic strength) conditions. The combination of experiments that incorporate pixel-level self-referencing (calibration) with a robust theoretical model allows for the analysis of local surface charge variations across cellular interfaces, as demonstrated on two important living systems. First, charge mapping at Zea mays root hairs shows that there is a high negative surface charge at the tip of the cell. Second, it is shown that there are distinct surface charge distributions across the surface of human adipocyte cells, whose role is the storage and regulation of lipids in mammalian systems. These are new features, not previously recognized, and their implications for the functioning of these cells are highlighted.


Assuntos
Microscopia de Varredura por Sonda/métodos , Zea mays/citologia , Membrana Celular/fisiologia , Concentração Osmolar , Raízes de Plantas/citologia , Propriedades de Superfície
7.
Anal Chem ; 88(10): 5523-30, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27108872

RESUMO

Nanopipettes are widely used in electrochemical and analytical techniques as tools for sizing, sequencing, sensing, delivery, and imaging. For all of these applications, the response of a nanopipette is strongly affected by its geometry and surface chemistry. As the size of nanopipettes becomes smaller, precise geometric characterization is increasingly important, especially if nanopipette probes are to be used for quantitative studies and analysis. This contribution highlights the combination of data from voltage-scanning ion conductivity experiments, transmission electron microscopy and finite element method simulations to fully characterize nanopipette geometry and surface charge characteristics, with an accuracy not achievable using existing approaches. Indeed, it is shown that presently used methods for characterization can lead to highly erroneous information on nanopipettes. The new approach to characterization further facilitates high-level quantification of the behavior of nanopipettes in electrochemical systems, as demonstrated herein for a scanning ion conductance microscope setup.

8.
Anal Chem ; 88(5): 2838-46, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26798938

RESUMO

Scanning ion conductance microscopy (SICM) is a powerful technique for imaging the topography of a wide range of materials and interfaces. In this report, we develop the use and scope of SICM, showing how it can be used for mapping spatial distributions of ionic fluxes due to (electro)chemical reactions occurring at interfaces. The basic idea is that there is a change of ion conductance inside a nanopipet probe when it approaches an active site, where the ionic composition is different to that in bulk solution, and this can be sensed via the current flow in the nanopipet with an applied bias. Careful tuning of the tip potential allows the current response to be sensitive to either topography or activity, if desired. Furthermore, the use of a distance modulation SICM scheme allows reasonably faithful probe positioning using the resulting ac response, irrespective of whether there is a reaction at the interface that changes the local ionic composition. Both strategies (distance modulation or tuned bias) allow simultaneous topography-activity mapping with a single channel probe. The application of SICM reaction imaging is demonstrated on several examples, including voltammetric mapping of electrocatalytic reactions on electrodes and high-speed electrochemical imaging at rates approaching 4 s per image frame. These two distinct approaches provide movies of electrochemical current as a function of potential with hundreds of frames (images) of surface reactivity, to reveal a wealth of spatially resolved information on potential- (and time) dependent electrochemical phenomena. The experimental studies are supported by detailed finite element method modeling that places the technique on a quantitative footing.

9.
Langmuir ; 32(32): 7993-8008, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27396415

RESUMO

A wide range of interfacial physicochemical processes, from electrochemistry to the functioning of living cells, involve spatially localized chemical fluxes that are associated with specific features of the interface. Scanning electrochemical probe microscopes (SEPMs) represent a powerful means of visualizing interfacial fluxes, and this Feature Article highlights recent developments that have radically advanced the speed, spatial resolution, functionality, and sensitivity of SEPMs. A major trend has been a coming together of SEPMs that developed independently and the use of established SEPMs in completely new ways, greatly expanding their scope and impact. The focus is on nanopipette-based SEPMs, including scanning ion conductance microscopy (SICM), scanning electrochemical cell microscopy (SECCM), and hybrid techniques thereof, particularly with scanning electrochemical microscopy (SECM). Nanopipette-based probes are made easily, quickly, and cheaply with tunable characteristics. They are reproducible and can be fully characterized. Their response can be modeled in considerable detail so that quantitative maps of chemical fluxes and other properties (e.g., local charge) can be obtained and analyzed. This article provides an overview of the use of these probes for high-speed imaging, to create movies of electrochemical processes in action, to carry out multifunctional mapping such as simultaneous topography-charge and topography-activity, and to create nanoscale electrochemical cells for the detection, trapping, and analysis of single entities, particularly individual molecules and nanoparticles (NPs). These studies provide a platform for the further application and diversification of SEPMs across a wide range of interfacial science.

10.
Anal Chem ; 87(8): 4479-86, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25833001

RESUMO

To understand biological processes at the cellular level, a general approach is to alter the cells' environment and to study their chemical responses. Herein, we present the implementation of an electrochemical push-pull probe, which combines a microfluidic system with a microelectrode, as a tool for locally altering the microenvironment of few adherent living cells by working in two different perturbation modes, namely electrochemical (i.e., electrochemical generation of a chemical effector compound) and microfluidic (i.e., infusion of a chemical effector compound from the pushing microchannel, while simultaneously aspirating it through the pulling channel, thereby focusing the flow between the channels). The effect of several parameters such as flow rate, working distance, and probe inclination angle on the affected area of adherently growing cells was investigated both theoretically and experimentally. As a proof of concept, localized fluorescent labeling and pH changes were purposely introduced to validate the probe as a tool for studying adherent cancer cells through the control over the chemical composition of the extracellular space with high spatiotemporal resolution. A very good agreement between experimental and simulated results showed that the electrochemical perturbation mode enables to affect precisely only a few living cells localized in a high-density cell culture.


Assuntos
Microambiente Celular , Técnicas Eletroquímicas , Técnicas Analíticas Microfluídicas , Técnicas Eletroquímicas/instrumentação , Humanos , Concentração de Íons de Hidrogênio , Microeletrodos , Técnicas Analíticas Microfluídicas/instrumentação , Células Tumorais Cultivadas
11.
Langmuir ; 31(43): 11932-42, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26448140

RESUMO

The electrochemical detection of a single nanoparticle (NP) at a support electrode can provide key information on surface chemistry and fundamental electron transfer (ET) properties at the nanoscale. This study employs scanning electrochemical cell microscopy (SECCM) as a fluidic device to both deliver individual citrate-capped gold nanoparticles (AuNPs) and study the interactions between them and a range of alkanethiol-modified Au electrodes with different terminal groups, namely, -COOH, -OH, and -CH3. Single NP collisions were detected through the AuNP-mediated ET reaction of Fe(CN)6(4-/3-) in aqueous solution. The collision frequency, residence time, and current-time characteristics of AuNPs are greatly affected by the terminal groups of the alkanethiol. Methods to determine these parameters, including the effect of the instrument response function, and derive ET kinetics are outlined. To further understand the interactions of AuNPs with these surfaces, atomic force microscopy (AFM) force measurements were performed using citrate-modified Au-coated AFM tips and the same alkanethiol-modified Au substrates in aqueous solution at the same potential bias as for the AuNP collision experiments. Force curves on OH-terminated surfaces showed no repulsion and negligible adhesion force. In contrast, a clear repulsion (on approach) was seen for COOH-terminated surface and adhesion forces (on retract) were observed for both COOH- and CH3-terminated surfaces. These interactions help to explain the residence times and collision frequencies in AuNP collisions. More generally, as the interfacial properties probed by AFM appear to be amplified in NP collision experiments, and new features also become evident, it is suggested that such experiments provide a new means of probing surface chemistry at the nanoscale.

12.
J Am Chem Soc ; 136(39): 13735-44, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25181551

RESUMO

Nanopipettes are emerging as simple but powerful tools for probing chemistry at the nanoscale. In this contribution the use of nanopipettes for simultaneous surface charge mapping and topographical imaging is demonstrated, using a scanning ion conductance microscopy (SICM) format. When a nanopipette is positioned close to a surface in electrolyte solution, the direct ion current (DC), driven by an applied bias between a quasi-reference counter electrode (QRCE) in the nanopipette and a second QRCE in the bulk solution, is sensitive to surface charge. The charge sensitivity arises because the diffuse double layers at the nanopipette and the surface interact, creating a perm-selective region which becomes increasingly significant at low ionic strengths (10 mM 1:1 aqueous electrolyte herein). This leads to a polarity-dependent ion current and surface-induced rectification as the bias is varied. Using distance-modulated SICM, which induces an alternating ion current component (AC) by periodically modulating the distance between the nanopipette and the surface, the effect of surface charge on the DC and AC is explored and rationalized. The impact of surface charge on the AC phase (with respect to the driving sinusoidal signal) is highlighted in particular; this quantity shows a shift that is highly sensitive to interfacial charge and provides the basis for visualizing charge simultaneously with topography. The studies herein highlight the use of nanopipettes for functional imaging with applications from cell biology to materials characterization where understanding surface charge is of key importance. They also provide a framework for the design of SICM experiments, which may be convoluted by topographical and surface charge effects, especially for small nanopipettes.


Assuntos
Técnicas Eletroquímicas , Nanotecnologia , Técnicas Eletroquímicas/instrumentação , Eletrodos , Nanotecnologia/instrumentação , Propriedades de Superfície
13.
Anal Chem ; 86(1): 713-20, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24328212

RESUMO

Scanning electrochemical microscopy with soft microelectrode array probes has recently been used to enable reactivity imaging of extended areas and to compensate sample corrugation perpendicular to the scanning direction. Here, the use of a new type of microelectrode arrays is described in which each individual microelectrode can independently compensate corrugations of the sample surface. It consists of conventional Pt microelectrodes enclosed in an insulating glass sheath. The microelectrodes are individually fixed to a new holder system by magnetic forces. The concept was tested using a large 3D sample with heights up to 12 µm specially prepared by inkjet printing. The microelectrodes follow the topography in a constant working distance independently from each other while exerting low pressure on the surface.


Assuntos
Microscopia Eletroquímica de Varredura/instrumentação , Microscopia Eletroquímica de Varredura/métodos , Microeletrodos
14.
Anal Chem ; 85(13): 6254-63, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23730778

RESUMO

A microchip electrospray emitter with a magnetic bead trap has been designed for solid-phase extraction-gradient elution-mass spectrometry (SPE-GEMS). The goal of this method is the detection of analytes at low concentrations and it is here demonstrated using reverse phase coated magnetic beads (Mbs) for the preconcentration and detection of the peptides. The sample is passed through the chip, and the peptides are retained and enriched in the trap. After washing, the peptides are released sequentially by stepwise gradient elution and electrosprayed for mass spectrometry analysis. This approach allows effective sample desalting, enrichment, sequential elution, and MS detection without the introduction of an additional separation step after SPE. Efficient preconcentration of model peptides by SPE and sequential release and analysis of peptides by GEMS were demonstrated for diluted sample solutions within the range of 1 µM to 10 nM. Fortified human blood serum, protein digest and fractions collected after protein digest OFFGEL separation were analyzed by SPE-GEMS allowing the detection of low abundance peptides usually not observed by direct mass spectrometry analysis. A mathematical model for gradient elution is proposed.


Assuntos
Técnicas Analíticas Microfluídicas/métodos , Fragmentos de Peptídeos/sangue , Extração em Fase Sólida/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Humanos
15.
Phys Chem Chem Phys ; 15(3): 972-8, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23212608

RESUMO

The electrochemical oxidation and reduction of decamethylferrocene is demonstrated in supercritical carbon dioxide at a macro gold disc electrode at 100 bar and 313 K. Fast mass transport effects were exhibited and the corresponding steady-state voltammetry was observed at high scan rates. A highly lipophilic room temperature ionic liquid that readily dissolved in supercritical CO(2) with acetonitrile as a co-solvent was used as an electrolyte, allowing for a conducting supercritical single phase. Experimental observations along with simulation results confirmed the hypothesis that a thin layer of liquid-like phase of co-solvent is formed at the electrode surface and is restricted by a more supercritical phase of high natural convection and bulk concentration.

16.
Annu Rev Anal Chem (Palo Alto Calif) ; 16(1): 71-91, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37068744

RESUMO

Electrochemical additive manufacturing is an advanced microfabrication technology capable of producing features of almost unlimited geometrical complexity. A unique combination of the capacity to process conductive materials, design freedom, and micro- to nanoscale resolution offered by these electrochemical techniques promises tremendous opportunities for a multitude of future applications spanning microelectronics, sensing, robotics, and energy storage. This review aims to equip readers with the basic principles of electrochemical 3D printing at the small length scale. By describing the basic principles of electrochemical additive manufacturing technology and using the recent advances in the field, this beginner's guide illustrates how controlling the fundamental phenomena that underpin the print process can be used to vary dimensions, morphology, and microstructure of printed structures.

17.
ACS Nano ; 17(19): 19168-19179, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37721359

RESUMO

Aptamers that undergo conformational changes upon small-molecule recognition have been shown to gate the ionic flux through nanopores by rearranging the charge density within the aptamer-occluded orifice. However, mechanistic insight into such systems where biomolecular interactions are confined in nanoscale spaces is limited. To understand the fundamental mechanisms that facilitate the detection of small-molecule analytes inside structure-switching aptamer-modified nanopores, we correlated experimental observations to theoretical models. We developed a dopamine aptamer-functionalized nanopore sensor with femtomolar detection limits and compared the sensing behavior with that of a serotonin sensor fabricated with the same methodology. When these two neurotransmitters with comparable mass and equal charge were detected, the sensors showed an opposite electronic behavior. This distinctive phenomenon was extensively studied using complementary experimental techniques such as quartz crystal microbalance with dissipation monitoring, in combination with theoretical assessment by the finite element method and molecular dynamic simulations. Taken together, our studies demonstrate that the sensing behavior of aptamer-modified nanopores in detecting specific small-molecule analytes correlates with the structure-switching mechanisms of individual aptamers. We believe that such investigations not only improve our understanding of the complex interactions occurring in confined nanoscale environments but will also drive further innovations in biomimetic nanopore technologies.

18.
Chem Commun (Camb) ; 59(99): 14713-14716, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37997814

RESUMO

Aptamer-based sensing of small molecules such as dopamine and serotonin in the brain, requires characterization of the specific aptamer sequences in solutions mimicking the in vivo environment with physiological ionic concentrations. In particular, divalent cations (Mg2+ and Ca2+) present in brain fluid, have been shown to affect the conformational dynamics of aptamers upon target recognition. Thus, for biosensors that transduce aptamer structure switching as the signal response, it is critical to interrogate the influence of divalent cations on each unique aptamer sequence. Herein, we demonstrate the potential of molecular dynamics (MD) simulations to predict the behaviour of dopamine and serotonin aptamers on sensor surfaces. The simulations enable molecular-level visualization of aptamer conformational changes that, in some cases, are significantly influenced by divalent cations. The correlations of theoretical simulations with experimental findings validate the potential for MD simulations to predict aptamer-specific behaviors on biosensors.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Cátions Bivalentes/química , Aptâmeros de Nucleotídeos/química , Dopamina , Serotonina , Simulação de Dinâmica Molecular
19.
Anal Chem ; 84(15): 6630-7, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22789113

RESUMO

This manuscript presents a push-pull electrochemical scanner able to image reactivity of initially dry surfaces by scanning electrochemical microscopy (SECM) and to probe molecules present or generated at the surface by mass spectrometry (MS). The proof-of-concept is demonstrated by coupling SECM with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for imaging latent human fingerprints, which had been in contact with picric acid used here as a model explosive. The push-pull electrochemical scanner has also been coupled with electrospray ionization mass spectrometry (ESI-MS) to assay the activity of surface spotted enzymes. These experimental studies are complemented by 3D finite element simulations solving Navier-Stokes and diffusion-convection differential equations to optimize the coupling between SECM imaging and mass spectrometry detection.


Assuntos
Técnicas Eletroquímicas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Enzimas Imobilizadas/metabolismo , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Picratos/química
20.
Anal Chem ; 84(13): 5565-73, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22762260

RESUMO

The modification of glass nanopipettes with polyethyleneimines (PEIs) has been successfully achieved by a relatively simple method, and the smallest tip opening is around 3 nm. Thus, in a much wider range of glass pipettes with radii from several nanometers to a few micrometers, the ion current rectification (ICR) phenomenon has been observed. The influences of different KCl concentrations, pH values, and tip radii on the ICR are investigated in detail. The sizes of PEIs have been determined by dynamic light scattering, and the effect of the sizes of PEIs for the modification, especially for a few nanometer-pipettes in radii, is also discussed. These findings systemically confirm and complement the theoretical model and provide a platform for possible selectively molecular detection and mimic biological ion channels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA