Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34548404

RESUMO

Homozygous mutation of the RNA kinase CLP1 (cleavage factor polyribonucleotide kinase subunit 1) causes pontocerebellar hypoplasia type 10 (PCH10), a pediatric neurodegenerative disease. CLP1 is associated with the transfer RNA (tRNA) splicing endonuclease complex and the cleavage and polyadenylation machinery, but its function remains unclear. We generated two mouse models of PCH10: one homozygous for the disease-associated Clp1 mutation, R140H, and one heterozygous for this mutation and a null allele. Both models exhibit loss of lower motor neurons and neurons of the deep cerebellar nuclei. To explore whether Clp1 mutation impacts tRNA splicing, we profiled the products of intron-containing tRNA genes. While mature tRNAs were expressed at normal levels in mutant mice, numerous other products of intron-containing tRNA genes were dysregulated, with pre-tRNAs, introns, and certain tRNA fragments up-regulated, and other fragments down-regulated. However, the spatiotemporal patterns of dysregulation do not correlate with pathogenicity for most altered tRNA products. To elucidate the effect of Clp1 mutation on precursor messenger RNA (pre-mRNA) cleavage, we analyzed poly(A) site (PAS) usage and gene expression in Clp1R140H/- spinal cord. PAS usage was shifted from proximal to distal sites in the mutant mouse, particularly in short and closely spaced genes. Many such genes were also expressed at lower levels in the Clp1R140H/- mouse, possibly as a result of impaired transcript maturation. These findings are consistent with the hypothesis that select genes are particularly dependent upon CLP1 for proper pre-mRNA cleavage, suggesting that impaired mRNA 3' processing may contribute to pathogenesis in PCH10.


Assuntos
Doenças Cerebelares/patologia , Doenças Neurodegenerativas/patologia , Poliadenilação , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/fisiologia , Fatores de Transcrição/fisiologia , Animais , Doenças Cerebelares/genética , Doenças Cerebelares/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Mensageiro/genética , RNA de Transferência/genética
2.
Proc Natl Acad Sci U S A ; 114(3): E406-E415, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28049845

RESUMO

The transcriptional events that lead to the cessation of neural proliferation, and therefore enable the production of proper numbers of differentiated neurons and glia, are still largely uncharacterized. Here, we report that the transcription factor Insulinoma-associated 1 (INSM1) forms complexes with RE1 Silencing Transcription factor (REST) corepressors RCOR1 and RCOR2 in progenitors in embryonic mouse brain. Mice lacking both RCOR1 and RCOR2 in developing brain die perinatally and generate an abnormally high number of neural progenitors at the expense of differentiated neurons and oligodendrocyte precursor cells. In addition, Rcor1/2 deletion detrimentally affects complex morphological processes such as closure of the interganglionic sulcus. We find that INSM1, a transcription factor that induces cell-cycle arrest, is coexpressed with RCOR1/2 in a subset of neural progenitors and forms complexes with RCOR1/2 in embryonic brain. Further, the Insm1-/- mouse phenocopies predominant brain phenotypes of the Rcor1/2 knockout. A large number of genes are concordantly misregulated in both knockout genotypes, and a majority of the down-regulated genes are targets of REST. Rest transcripts are up-regulated in both knockouts, and reducing transcripts to control levels in the Rcor1/2 knockout partially rescues the defect in interganglionic sulcus closure. Our findings indicate that an INSM1/RCOR1/2 complex controls the balance of proliferation and differentiation during brain development.


Assuntos
Encéfalo/fisiologia , Diferenciação Celular/genética , Proliferação de Células/genética , Proteínas Correpressoras/genética , Proteínas de Ligação a DNA/genética , Proteínas do Tecido Nervoso/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Animais , Regulação para Baixo/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Regulação para Cima/genética
3.
Nature ; 475(7357): 497-500, 2011 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-21716289

RESUMO

Rett's syndrome (RTT) is an X-chromosome-linked autism spectrum disorder caused by loss of function of the transcription factor methyl-CpG-binding protein 2 (MeCP2). Although MeCP2 is expressed in most tissues, loss of MeCP2 expression results primarily in neurological symptoms. Earlier studies suggested the idea that RTT is due exclusively to loss of MeCP2 function in neurons. Although defective neurons clearly underlie the aberrant behaviours, we and others showed recently that the loss of MECP2 from glia negatively influences neurons in a non-cell-autonomous fashion. Here we show that in globally MeCP2-deficient mice, re-expression of Mecp2 preferentially in astrocytes significantly improved locomotion and anxiety levels, restored respiratory abnormalities to a normal pattern, and greatly prolonged lifespan compared to globally null mice. Furthermore, restoration of MeCP2 in the mutant astrocytes exerted a non-cell-autonomous positive effect on mutant neurons in vivo, restoring normal dendritic morphology and increasing levels of the excitatory glutamate transporter VGLUT1. Our study shows that glia, like neurons, are integral components of the neuropathology of RTT, and supports the targeting of glia as a strategy for improving the associated symptoms.


Assuntos
Neuroglia/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Animais , Ansiedade/metabolismo , Astrócitos/metabolismo , Comportamento Animal , Progressão da Doença , Feminino , Regulação da Expressão Gênica , Masculino , Proteína 2 de Ligação a Metil-CpG/deficiência , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Neuroglia/patologia , Neurônios/metabolismo , Síndrome de Rett/fisiopatologia , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
4.
Neuron ; 96(3): 616-637, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29096076

RESUMO

Dynamic regulation of mRNA translation initiation and elongation is essential for the survival and function of neural cells. Global reductions in translation initiation resulting from mutations in the translational machinery or inappropriate activation of the integrated stress response may contribute to pathogenesis in a subset of neurodegenerative disorders. Aberrant proteins generated by non-canonical translation initiation may be a factor in the neuron death observed in the nucleotide repeat expansion diseases. Dysfunction of central components of the elongation machinery, such as the tRNAs and their associated enzymes, can cause translational infidelity and ribosome stalling, resulting in neurodegeneration. Taken together, dysregulation of mRNA translation is emerging as a unifying mechanism underlying the pathogenesis of many neurodegenerative disorders.


Assuntos
Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Neurônios/fisiologia , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/fisiologia , Animais , Morte Celular/fisiologia , Citoplasma/genética , Citoplasma/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA