Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Mol Phylogenet Evol ; 178: 107644, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36243328

RESUMO

Ectomycorrhizal fungi (ECM) sustain nutrient recycling in most terrestrial ecosystems, yet we know little about what major biogeographical events gave rise to present-day diversity and distribution patterns. Given the strict relationship between some ECM lineages and their hosts, geographically well-sampled phylogenies are central to understanding major evolutionary processes of fungal biodiversity patterns. Here, we focus on Amanita sect. Vaginatae to address global diversity and distribution patterns. Ancestral-state-reconstruction based on a 4-gene timetree with over 200 species supports an African origin between the late Paleocene and the early Eocene (ca. 56 Ma). Major biogeographic "out-of-Africa" events include multiple dispersal events to Southeast Asia (ca. 45-21 Ma), Madagascar (ca. 18 Ma), and the current Amazonian basin (ca. 45-36 Ma), the last two likely trans-oceanic. Later events originating in Southeast Asia involve Nearctic dispersal to North America (ca. 20-5 Ma), Oceania (Australia and New Zealand; ca. 15 Ma), and Europe (ca. 10-5 Ma). Subsequent dispersals were also inferred from Southeast Asia to East Asia (ca. 4 Ma); from North America to East Asia (ca. 11-8 Ma), Southeast Asia (ca. 19-2 Ma), Northern Andes (ca. 15 Ma), and Europe (ca. 15-2 Ma), respectively; and from the Amazon to the Caribbean region (ca. 25-20 Ma). Finally, we detected a significant increase in the net diversification rates in the branch leading to most northern temperate species in addition to higher state-dependent diversification rates in temperate lineages, consistent with previous findings. These results suggest that species of sect. Vaginatae likely have higher dispersal ability and higher adaptability to new environments, in particular compared to those of its sister clade, sect. Caesareae. Overall, the much wider distribution of A. sect. Vaginatae, from pan-tropical to pan-arctic, provides a unique window to understanding niche conservatism across a species-rich clade of ECM fungi.


Assuntos
Amanita , Ecossistema , Filogenia , Evolução Biológica , América , Filogeografia
2.
Mol Phylogenet Evol ; 139: 106550, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31279967

RESUMO

Smittium (Harpellales, Kickxellomycotina) includes fungal symbionts associated with the digestive tracts of immature aquatic stages of various Diptera, including Chironomidae, Culicidae, Dixidae, Simuliidae, Thaumaleidae, and Tipulidae. With 84 species and the largest collection of cultured strains, Smittium has served as a model to understand the biology of these enigmatic trichomycetes gut fungi, from aspects of biodiversity, evolution, genomics, immunology, and physiology. However, evolutionary histories between Smittium species and their hosts are still not firmly established. Robust phylogenies of both Smittium sensu lato (s.l.) and their lower Diptera hosts have been reconstructed separately, facilitating comparative evolutionary studies between the two. The divergence time of the Smittium s.l. clade was estimated for the first time and compared with the evolutionary history of the insect hosts. The insect gut fungi diversified around 272 Ma (204-342 Ma), which co-occurred with the origin of complete metamorphosis of the insect hosts, presumably between 280 Ma and 355 Ma (~270 Ma for Diptera). A co-phylogenetic pattern was recovered for the insects and their symbiotic gut fungi using the statistical method ParaFit. Ancestral state reconstructions of the symbiotic relationship suggest that the ancestor of the Chironomidae may have contributed to the initiation of these insect-fungus symbiotic interactions. Further sampling and sequencing of Smittium and allies as well as their hosts are needed to uncover more patterns and interactions that may occur in this type of symbiosis.


Assuntos
Biodiversidade , Fungos/classificação , Trato Gastrointestinal/microbiologia , Insetos/microbiologia , Filogenia , Simbiose , Animais , Teorema de Bayes , Fatores de Tempo
3.
Mol Biol Evol ; 33(10): 2544-54, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27343289

RESUMO

Harpellales, an early-diverging fungal lineage, is associated with the digestive tracts of aquatic arthropod hosts. Concurrent with the production and annotation of the first four Harpellales genomes, we discovered that Zancudomyces culisetae, one of the most widely distributed Harpellales species, encodes an insect-like polyubiquitin chain. Ubiquitin and ubiquitin-like proteins are universally involved in protein degradation and regulation of immune response in eukaryotic organisms. Phylogenetic analyses inferred that this polyubiquitin variant has a mosquito origin. In addition, its amino acid composition, animal-like secondary structure, as well as the fungal nature of flanking genes all further support this as a horizontal gene transfer event. The single-copy polyubiquitin gene from Z. culisetae has lower GC ratio compared with homologs of insect taxa, which implies homogenization of the gene since its putatively ancient transfer. The acquired polyubiquitin gene may have served to improve important functions within Z. culisetae, by perhaps exploiting the insect hosts' ubiquitin-proteasome systems in the gut environment. Preliminary comparisons among the four Harpellales genomes highlight the reduced genome size of Z. culisetae, which corroborates its distinguishable symbiotic lifestyle. This is the first record of a horizontally transferred ubiquitin gene from disease-bearing insects to the gut-dwelling fungal endobiont and should invite further exploration in an evolutionary context.


Assuntos
Culicidae/microbiologia , Fungos/genética , Transferência Genética Horizontal , Ubiquitina/genética , Animais , Evolução Biológica , Trato Gastrointestinal/microbiologia , Genoma , Fenótipo , Filogenia , Simbiose/genética , Ubiquitinação/genética
4.
Mol Ecol ; 24(23): 5938-56, 2015 12.
Artigo em Inglês | MEDLINE | ID: mdl-26465233

RESUMO

Some of the effects of past climate dynamics on plant and animal diversity make-up have been relatively well studied, but to less extent in fungi. Pleistocene refugia are thought to harbour high biological diversity (i.e. phylogenetic lineages and genetic diversity), mainly as a product of increased reproductive isolation and allele conservation. In addition, high extinction rates and genetic erosion are expected in previously glaciated regions. Some of the consequences of past climate dynamics might involve changes in range and population size that can result in divergence and incipient or cryptic speciation. Many of these dynamic processes and patterns can be inferred through phylogenetic and coalescent methods. In this study, we first delimit species within a group of closely related edible ectomycorrhizal Amanita from North America (the American Caesar's mushrooms species complex) using multilocus coalescent-based approaches; and then address questions related to effects of Pleistocene climate change on the diversity and genetics of the group. Our study includes extensive geographical sampling throughout the distribution range, and DNA sequences from three nuclear protein-coding genes. Results reveal cryptic diversity and high speciation rates in refugia. Population sizes and expansions seem to be larger at midrange latitudes (Mexican highlands and SE USA). Range shifts are proportional to population size expansions, which were overall more common during the Pleistocene. This study documents responses to past climate change in fungi and also highlights the applicability of the multispecies coalescent in comparative phylogeographical analyses and diversity assessments that include ancestral species.


Assuntos
Amanita/classificação , Evolução Biológica , Filogenia , Refúgio de Vida Selvagem , Amanita/genética , Teorema de Bayes , Mudança Climática , DNA Fúngico/genética , Genes Fúngicos , Genética Populacional , Modelos Genéticos , Dados de Sequência Molecular , Técnicas de Tipagem Micológica , América do Norte , Filogeografia , Densidade Demográfica , Análise de Sequência de DNA
5.
Mycologia ; 116(3): 392-408, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38551379

RESUMO

The porcini mushroom family Boletaceae is a diverse, widespread group of ectomycorrhizal (ECM) mushroom-forming fungi that so far has eluded intrafamilial phylogenetic resolution based on morphology and multilocus data sets. In this study, we present a genome-wide molecular data set of 1764 single-copy gene families from a global sampling of 418 Boletaceae specimens. The resulting phylogenetic analysis has strong statistical support for most branches of the tree, including the first statistically robust backbone. The enigmatic Phylloboletellus chloephorus from non-ECM Argentinian subtropical forests was recovered as a new subfamily sister to the core Boletaceae. Time-calibrated branch lengths estimate that the family first arose in the early to mid-Cretaceous and underwent a rapid radiation in the Eocene, possibly when the ECM nutritional mode arose with the emergence and diversification of ECM angiosperms. Biogeographic reconstructions reveal a complex history of vicariance and episodic long-distance dispersal correlated with historical geologic events, including Gondwanan origins and inferred vicariance associated with its disarticulation. Together, this study represents the most comprehensively sampled, data-rich molecular phylogeny of the Boletaceae to date, establishing a foundation for future robust inferences of biogeography in the group.


Assuntos
Agaricales , Genoma Fúngico , Filogenia , Agaricales/genética , Agaricales/classificação , Agaricales/isolamento & purificação , Sequenciamento Completo do Genoma , Micorrizas/genética , Micorrizas/classificação , Filogeografia
6.
Mycologia ; 104(5): 1159-77, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22495449

RESUMO

Recent molecular phylogenetic studies have revealed the existence of at least 50 species of Morchella worldwide and demonstrated a high degree of continental endemism within the genus. Here we describe 19 phylogenetic species of Morchella from North America, 14 of which are new (M. diminutiva, M. virginiana, M. esculentoides, M. prava, M. cryptica, M. frustrata, M. populiphila, M. sextelata, M. septimelata, M. capitata, M. importuna, M. snyderi, M. brunnea and M. septentrionalis). Existing species names (M. rufobrunnea, M. tomentosa, M. punctipes and M. angusticeps) are applied to four phylogenetic species, and formal description of one species (M. sp. "Mel-8") is deferred pending study of additional material. Methods for assessing morphological features in Morchella are delineated, and a key to the known phylogenetic species of Morchella in North America is provided. Type studies of M. crassistipa, M. hotsonii, M. angusticeps and M. punctipes are provided. Morchella crassistipa is designated nomen dubium.


Assuntos
Agaricales/classificação , Agaricales/genética , Agaricales/ultraestrutura , Canadá , DNA Fúngico/genética , Filogenia , Estados Unidos
7.
Mycologia ; 104(6): 1351-68, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22802394

RESUMO

Arguably more mycophiles hunt true morels (Morchella) during their brief fruiting season each spring in the northern hemisphere than any other wild edible fungus. Concerns about overharvesting by individual collectors and commercial enterprises make it essential that science-based management practices and conservation policies are developed to ensure the sustainability of commercial harvests and to protect and preserve morel species diversity. Therefore, the primary objectives of the present study were to: (i) investigate the utility of the ITS rDNA locus for identifying Morchella species, using phylogenetic species previously inferred from multilocus DNA sequence data as a reference; and (ii) clarify insufficiently identified sequences and determine whether the named sequences in GenBank were identified correctly. To this end, we generated 553 Morchella ITS rDNA sequences and downloaded 312 additional ones generated by other researchers from GenBank using emerencia and analyzed them phylogenetically. Three major findings emerged: (i) ITS rDNA sequences were useful in identifying 48/62 (77.4%) of the known phylospecies; however, they failed to identify 12 of the 22 species within the species-rich Elata Subclade and two closely related species in the Esculenta Clade; (ii) at least 66% of the named Morchella sequences in GenBank are misidentified; and (iii) ITS rDNA sequences of up to six putatively novel Morchella species were represented in GenBank. Recognizing the need for a dedicated Web-accessible reference database to facilitate the rapid identification of known and novel species, we constructed Morchella MLST (http://www.cbs.knaw.nl/morchella/), which can be queried with ITS rDNA sequences and those of the four other genes used in our prior multilocus molecular systematic studies of this charismatic genus.


Assuntos
Ascomicetos/classificação , DNA Espaçador Ribossômico/genética , Filogenia , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Sequência de Bases , Biodiversidade , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/química , Bases de Dados de Ácidos Nucleicos , Dados de Sequência Molecular , Técnicas de Tipagem Micológica , Filogeografia , Análise de Sequência de DNA
8.
MycoKeys ; 89: 171-233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36760828

RESUMO

Macrofungi form fruiting bodies that can be detected with the naked eye in the field and handled by hand. They mostly consist of basidiomycetes, but also include some ascomycetes. Mycology in Pakistan is still in its infancy, but there have been many historical reports and checklists of macrofungi occurrence from its 15 ecoregions, which range from Himalayan alpine grasslands and subtropical pine forests to deserts and xeric shrublands. In this work, we searched and reviewed the historical literature and the GenBank database for compiling a comprehensive list of macrofungi reported from Pakistan to date. We recorded 1,293 species belonging to 411 genera, 115 families and 24 orders. These occurrences were updated taxonomically following the classification system currently proposed in the Index Fungorum website. The highest represented order by taxon number is Agaricales (47%) with 31 families, 146 genera and 602 species, followed by Polyporales (11%), Russulales (9%) and Pezizales (8%). Genera occurrence reported therein are presented for each ecoregion to the best of our ability given the data. We also discussed the currently known macrofungi diversity between different ecoregions in Pakistan. Overall, this work should serve as a solid foundation for the inclusion of Pakistan macrofungi in global biodiversity and conservation studies.

9.
Mol Phylogenet Evol ; 57(3): 1276-92, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20970511

RESUMO

Porcini (Boletus section Boletus: Boletaceae: Boletineae: Boletales) are a conspicuous group of wild, edible mushrooms characterized by fleshy fruiting bodies with a poroid hymenophore that is "stuffed" with white hyphae when young. Their reported distribution is with ectomycorrhizal plants throughout the Northern Hemisphere. Little progress has been made on the systematics of this group using modern molecular phylogenetic tools because sampling has been limited primarily to European species and the genes employed were insufficient to resolve the phylogeny. We examined the evolutionary history of porcini by using a global geographic sampling of most known species, new discoveries from little explored areas, and multiple genes. We used 78 sequences from the fast-evolving nuclear internal transcribed spacers and are able to recognize 18 reciprocally monophyletic species. To address whether or not porcini form a monophyletic group, we compiled a broadly sampled dataset of 41 taxa, including other members of the Boletineae, and used separate and combined phylogenetic analysis of sequences from the nuclear large subunit ribosomal DNA, the largest subunit of RNA polymerase II, and the mitochondrial ATPase subunit six gene. Contrary to previous studies, our separate and combined phylogenetic analyses support the monophyly of porcini. We also report the discovery of two taxa that expand the known distribution of porcini to Australia and Thailand and have ancient phylogenetic connections to the rest of the group. A relaxed molecular clock analysis with these new taxa dates the origin of porcini to between 42 and 54 million years ago, coinciding with the initial diversification of angiosperms, during the Eocene epoch when the climate was warm and humid. These results reveal an unexpected diversity, distribution, and ancient origin of a group of commercially valuable mushrooms that may provide an economic incentive for conservation and support the hypothesis of a tropical origin of the ectomycorrhizal symbiosis.


Assuntos
Agaricales/classificação , Agaricales/genética , Evolução Molecular , Filogenia , Teorema de Bayes , DNA Fúngico/genética , DNA Mitocondrial/genética , DNA Espaçador Ribossômico/genética , Funções Verossimilhança , Alinhamento de Sequência , Análise de Sequência de DNA
10.
Appl Environ Microbiol ; 75(23): 7527-36, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19801471

RESUMO

The long-term impact of field-deployed genetically modified trees on soil mutualistic organisms is not well known. This study aimed at evaluating the impact of poplars transformed with a binary vector containing the selectable nptII marker and beta-glucuronidase reporter genes on ectomycorrhizal (EM) fungi 8 years after field deployment. We generated 2,229 fungal internal transcribed spacer (ITS) PCR products from 1,150 EM root tips and 1,079 fungal soil clones obtained from the organic and mineral soil horizons within the rhizosphere of three control and three transformed poplars. Fifty EM fungal operational taxonomic units were identified from the 1,706 EM fungal ITS amplicons retrieved. Rarefaction curves from both the root tips and soil clones were close to saturation, indicating that most of the EM species present were recovered. Based on qualitative and/or quantitative alpha- and beta-diversity measurements, statistical analyses did not reveal significant differences between EM fungal communities associated with transformed poplars and the untransformed controls. However, EM communities recovered from the root tips and soil cloning analyses differed significantly from each other. We found no evidence of difference in the EM fungal community structure linked to the long-term presence of the transgenic poplars studied, and we showed that coupling root tip analysis with a soil DNA cloning strategy is a complementary approach to better document EM fungal diversity.


Assuntos
Biodiversidade , Fungos/classificação , Fungos/isolamento & purificação , Micorrizas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/microbiologia , Populus/microbiologia , Microbiologia do Solo , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Dados de Sequência Molecular , Filogenia , Raízes de Plantas/microbiologia , Análise de Sequência de DNA
11.
Mol Ecol ; 17(13): 3037-50, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18494767

RESUMO

This is the first study to assess the diversity and community structure of the Agaricomycotina in an ectotrophic forest using above-ground fruiting body surveys as well as soil rDNA sampling. We recovered 132 molecular operational taxonomic units, or 'species', from fruiting bodies and 66 from soil, with little overlap. Fruiting body sampling primarily recovered fungi from the Agaricales, Russulales, Boletales and Cantharellales. Many of these species are ectomycorrhizal and form large fruiting bodies. Soil rDNA sampling recovered fungi from these groups in addition to taxa overlooked during the fruiting body survey from the Atheliales, Trechisporales and Sebacinales. Species from these groups form inconspicuous, resupinate and corticioid fruiting bodies. Soil sampling also detected fungi from the Hysterangiales that form fruiting bodies underground. Generally, fruiting body and soil rDNA samples recover a largely different assemblage of fungi at the species level; however, both methods identify the same dominant fungi at the genus-order level and ectomycorrhizal fungi as the prevailing type. Richness, abundance, and phylogenetic diversity (PD) identify the Agaricales as the dominant fungal group above- and below-ground; however, we find that molecularly highly divergent lineages may account for a greater proportion of total diversity using the PD measure compared with richness and abundance. Unless an exhaustive inventory is required, the rapidity and versatility of DNA-based sampling may be sufficient for a first assessment of the dominant taxonomic and ecological groups of fungi in forest soil.


Assuntos
Basidiomycota/genética , DNA Ribossômico/genética , Carpóforos/genética , Cicutas (Apiáceas)/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Basidiomycota/classificação , Basidiomycota/crescimento & desenvolvimento , DNA Fúngico/análise , DNA Fúngico/genética , DNA Ribossômico/análise , Ecossistema , Carpóforos/crescimento & desenvolvimento , Ontário , Filogenia , Reação em Cadeia da Polimerase , Solo/análise , Microbiologia do Solo
12.
mBio ; 9(3)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29764946

RESUMO

Modern genomics has shed light on many entomopathogenic fungi and expanded our knowledge widely; however, little is known about the genomic features of the insect-commensal fungi. Harpellales are obligate commensals living in the digestive tracts of disease-bearing insects (black flies, midges, and mosquitoes). In this study, we produced and annotated whole-genome sequences of nine Harpellales taxa and conducted the first comparative analyses to infer the genomic diversity within the members of the Harpellales. The genomes of the insect gut fungi feature low (26% to 37%) GC content and large genome size variations (25 to 102 Mb). Further comparisons with insect-pathogenic fungi (from both Ascomycota and Zoopagomycota), as well as with free-living relatives (as negative controls), helped to identify a gene toolbox that is essential to the fungus-insect symbiosis. The results not only narrow the genomic scope of fungus-insect interactions from several thousands to eight core players but also distinguish host invasion strategies employed by insect pathogens and commensals. The genomic content suggests that insect commensal fungi rely mostly on adhesion protein anchors that target digestive system, while entomopathogenic fungi have higher numbers of transmembrane helices, signal peptides, and pathogen-host interaction (PHI) genes across the whole genome and enrich genes as well as functional domains to inactivate the host inflammation system and suppress the host defense. Phylogenomic analyses have revealed that genome sizes of Harpellales fungi vary among lineages with an integer-multiple pattern, which implies that ancient genome duplications may have occurred within the gut of insects.IMPORTANCE Insect guts harbor various microbes that are important for host digestion, immune response, and disease dispersal in certain cases. Bacteria, which are among the primary endosymbionts, have been studied extensively. However, fungi, which are also frequently encountered, are poorly known with respect to their biology within the insect guts. To understand the genomic features and related biology, we produced the whole-genome sequences of nine gut commensal fungi from disease-bearing insects (black flies, midges, and mosquitoes). The results show that insect gut fungi tend to have low GC content across their genomes. By comparing these commensals with entomopathogenic and free-living fungi that have available genome sequences, we found a universal core gene toolbox that is unique and thus potentially important for the insect-fungus symbiosis. This comparative work also uncovered different host invasion strategies employed by insect pathogens and commensals, as well as a model system to study ancient fungal genome duplication within the gut of insects.


Assuntos
Fungos/genética , Genoma Fúngico , Insetos/microbiologia , Simbiose , Animais , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/classificação , Fungos/isolamento & purificação , Fungos/fisiologia , Genômica , Interações Hospedeiro-Patógeno , Insetos/genética , Insetos/fisiologia , Filogenia
13.
MycoKeys ; (38): 47-57, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30275739

RESUMO

Members of the mushroom genus Amanita usually can easily be identified to the genus in the field, however, species circumscription and identification are often problematic. Several names have been misapplied and cryptic species exist. Here, we formally describe and validate two new species of Amanitasect.Vaginatae from eastern North America that were recognised under the umbrella European names A.ceciliae by past authors: Amanitarhacopus sp. nov. and Amanitavariicolor sp. nov.

14.
Mycologia ; 98(6): 937-48, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17486970

RESUMO

We reassessed the circumscription of the cantharelloid clade and identified monophyletic groups by using nLSU, nSSU, mtSSU and RPB2 sequence data. Results agreed with earlier studies that placed the genera Cantharellus, Craterellus, Hydnum, Clavulina, Membranomyces, Multiclavula, Sistotrema, Botryobasidium and the family Ceratobasidiaceae in that clade. Phylogenetic analyses support monophyly of all genera except Sistotrema, which was highly polyphyletic. Strongly supported monophyletic groups were: (i) Cantharellus-Craterellus, Hydnum, and the Sistotrema confluens group; (ii) Clavulina-Membranomyces and the S. brinkmannii-oblongisporum group, with Multiclavula being possibly sister of that clade; (iii) the Sistotrema eximum-octosporum group; (iv) Sistotrema adnatum and S. coronilla. Positions of Sistotrema raduloides and S. athelioides were unresolved, as were basal relationships. Botryobasidium was well supported as the sister taxon of all the above taxa, while Ceratobasidiaceae was the most basal lineage. The relationship between Tulasnella and members of the cantharelloid clade will require further scrutiny, although there is cumulative evidence that they are probably sister groups. The rates of molecular evolution of both the large and small nuclear ribosomal RNA genes (nuc-rDNA) are much higher in Cantharellus, Craterellus and Tulasnella than in the other cantharelloid taxa, and analyses of nuc-rDNA sequences strongly placed Tulasnella close to Cantharellus-Craterellus. In contrast analyses with RPB2 and mtSSU sequences placed Tulasnella at the base of the cantharelloid clade. Our attempt to reconstruct a "supertree" from tree topologies resulting from separate analyses that avoided phylogenetic reconstruction problems associated with missing data and/or unalignable sequences proved unsuccessful.


Assuntos
Basidiomycota/classificação , Biologia Computacional/métodos , DNA Fúngico/genética , DNA Mitocondrial/genética , DNA Ribossômico/genética , Filogenia , Basidiomycota/genética , Basidiomycota/fisiologia , Evolução Molecular , Dados de Sequência Molecular , RNA Polimerase II/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , Análise de Sequência de DNA
15.
Mycologia ; 98(6): 982-95, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17486974

RESUMO

An overview of the phylogeny of the Agaricales is presented based on a multilocus analysis of a six-gene region supermatrix. Bayesian analyses of 5611 nucleotide characters of rpb1, rpb1-intron 2, rpb2 and 18S, 25S, and 5.8S ribosomal RNA genes recovered six major clades, which are recognized informally and labeled the Agaricoid, Tricholomatoid, Marasmioid, Pluteoid, Hygrophoroid and Plicaturopsidoid clades. Each clade is discussed in terms of key morphological and ecological traits. At least 11 origins of the ectomycorrhizal habit appear to have evolved in the Agaricales, with possibly as many as nine origins in the Agaricoid plus Tricholomatoid clade alone. A family-based phylogenetic classification is sketched for the Agaricales, in which 30 families, four unplaced tribes and two informally named clades are recognized.


Assuntos
Agaricales/classificação , Agaricales/genética , Filogenia , Agaricales/fisiologia , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ecologia , Íntrons/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Dados de Sequência Molecular , Micorrizas , RNA Ribossômico/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 5,8S/genética , Análise de Sequência de DNA , Homologia de Sequência
16.
Genome Announc ; 4(4)2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27491991

RESUMO

Capniomyces stellatus is a host-specific endosymbiotic fungus, living in the hindgut of stoneflies (especially in Allocapnia). Here, we present the first draft genome sequence of the fungus, as well as the ab initio gene prediction and function analyses, which will facilitate the study and comparative analyses of insect-associated fungi.

17.
Mycologia ; 97(5): 1140-51, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16596964

RESUMO

A fungus with gelatinous poroid fruiting bodies was found in Puerto Rico and determined by macro- and micromorphology to be most similar to members of the lamellate agaric genus Resupinatus. This species is described as a new species, Resupinatus porosus. Phylogenetic analyses of ribosomal DNA sequences support the inclusion of this fungus in the clade containing Resupinatus, and indicate that this monophyletic group also includes members of Asterotus and the cyphelloid genus Stigmatolemma. Resupinatus porosus is another example of tropical poroid representatives of lamellate agaric genera. Resupinatus is emended to include species with poroid (R. porosus) or merulioid (R. merulioides) hymenophore as well as those with laterally stipitate (Asterotus) or cyphelloid (Stigmatolemma) fruiting bodies. Seven new combinations in Resupinatus are proposed to accommodate well-known species of Stigmatolemma.


Assuntos
Agaricales/classificação , Agaricales/citologia , Agaricales/genética , Agaricales/isolamento & purificação , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Fotografação , Fotomicrografia , Filogenia , Porto Rico , Análise de Sequência de DNA
18.
Evolution ; 69(8): 2196-209, 2015 08.
Artigo em Inglês | MEDLINE | ID: mdl-26179951

RESUMO

Understanding the patterns of biodiversity through time and space is a challenging task. However, phylogeny-based macroevolutionary models allow us to account and measure many of the processes responsible for diversity buildup, namely speciation and extinction. The general latitudinal diversity gradient (LDG) is a well-recognized pattern describing a decline in species richness from the equator polewards. Recent macroecological studies in ectomycorrhizal (EM) fungi have shown that their LDG is shifted, peaking at temperate rather than tropical latitudes. Here we investigate this phenomenon from a macroevolutionary perspective, focusing on a well-sampled group of edible EM mushrooms from the genus Amanita-the Caesar's mushrooms, which follow similar diversity patterns. Our approach consisted in applying a suite of models including (1) nontrait-dependent time-varying diversification (Bayesian analysis of macroevolutionary mixtures [BAMM]), (2) continuous trait-dependent diversification (quantitative-state speciation and extinction [QuaSSE]), and (3) diversity-dependent diversification. In short, results give strong support for high speciation rates at temperate latitudes (BAMM and QuaSSE). We also find some evidence for different diversity-dependence thresholds in "temperate" and "tropical" subclades, and little differences in diversity due to extinction. We conclude that our analyses on the Caesar's mushrooms give further evidence of a temperate-peaking LDG in EM fungi, highlighting the importance and the implications of macroevolutionary processes in explaining diversity gradients in microorganisms.


Assuntos
Amanita/genética , Biodiversidade , Especiação Genética , Micorrizas/genética , Amanita/fisiologia , Teorema de Bayes , Evolução Biológica , Clima , Micorrizas/fisiologia , Filogenia , Dinâmica Populacional
19.
Mycologia ; 96(5): 1042-58, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-21148925

RESUMO

Research on the molecular systematics of Cortinarius, a species-rich mushroom genus with nearly global distribution, is just beginning. The present study explores infrageneric relationships using rDNA ITS and LSU sequence data. One large dataset of 132 rDNA ITS sequences and one combined da-taset with 54 rDNA ITS and LSU sequences were generated. Hebeloma was used as outgroup. Bayesian analyses and maximum-likelihood (ML) analyses were carried out. Bayesian phylogenetic inference performed equally well or better than ML, especially in large datasets. The phylogenetic analysis of the combined dataset with species representing all currently recognized subgenera recovered seven well-supported clades (Bayesian posterior probabilities BPP > 90%). These major clades are: /Myxacium s.l., /subg. Cortinarius, the /phlegmacioid clade (including the subclades /Phlegmacium and /Delibuti), the /calochroid clade (/Calochroi, /Ochroleuci and /Allutus), the /telamonioid clade (/Telamonia, /Orellani, /Anomali), /Dermocybe s.l. and /Myxotelamonia. Our results show that Cortinarius consists of many lineages, but the relationships among these clades could not be elucidated. On one hand, the low divergence in rDNA sequences can be held responsible for this; on the other hand, taxon sampling is problematic in Cortinarius phylogeny. Because of the incredibly high diversity (~2000 Cortinarius species), our sampling included <5% of the known species. By choosing type species of subgenera and sections, our sampling is strongly biased toward Northern Hemisphere taxa. More extensive taxon sampling, especially of species from the Southern Hemisphere, is essential to resolve the phylogeny of this important genus of ectomycorrhizal fungi.

20.
Mycologia ; 96(4): 859-65, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-21148905

RESUMO

A new species of Entolomataceae, Rhodocybe paurii, is described from Garhwal in the western Indian Himalaya. This species grows on wood in dense clusters and belongs to section Claudopodes Singer ex Baroni because of its pleurotoid habit and lack of hymenial pseudocystidia. It is distinguished from the other pleurotoid species in that section by its layered caespitose habit, a brown spore deposit and a tomentose pileus surface composed of a well-developed layer of hyaline, erect, filamentous hyphae. Phylogenetic analysis using nucleotide sequence data from the nuclear large ribosomal subunit gene indicates a close relationship between R. paurii and the type species of the genus, Rhodocybe caelata. This analysis also suggests a possible paraphyly of the genus Rhodocybe and supports monophyly of Entoloma sensu lato.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA