Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Virol ; 95(9): e29067, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37675796

RESUMO

The COVID-19 pandemic had a profound impact on global health, but rapid vaccine administration resulted in a significant decline in morbidity and mortality rates worldwide. In this study, we sought to explore the temporal changes in the humoral immune response against SARS-CoV-2 healthcare workers (HCWs) in Augusta, GA, USA, and investigate any potential associations with ethno-demographic features. Specifically, we aimed to compare the naturally infected individuals with naïve individuals to understand the immune response dynamics after SARS-CoV-2 vaccination. A total of 290 HCWs were included and assessed prospectively in this study. COVID status was determined using a saliva-based COVID assay. Neutralizing antibody (NAb) levels were quantified using a chemiluminescent immunoassay system, and IgG levels were measured using an enzyme-linked immunosorbent assay method. We examined the changes in antibody levels among participants using different statistical tests including logistic regression and multiple correspondence analysis. Our findings revealed a significant decline in NAb and IgG levels at 8-12 months postvaccination. Furthermore, a multivariable analysis indicated that this decline was more pronounced in White HCWs (odds ratio [OR] = 2.1, 95% confidence interval [CI] = 1.07-4.08, p = 0.02) and IgG (OR = 2.07, 95% CI = 1.04-4.11, p = 0.03) among the whole cohort. Booster doses significantly increased IgG and NAb levels, while a decline in antibody levels was observed in participants without booster doses at 12 months postvaccination. Our results highlight the importance of understanding the dynamics of immune response and the potential influence of demographic factors on waning immunity to SARS-CoV-2. In addition, our findings emphasize the value of booster doses to ensure durable immunity.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/prevenção & controle , Pandemias , SARS-CoV-2 , Anticorpos Neutralizantes , Pessoal de Saúde , Imunoglobulina G
2.
Curr Issues Mol Biol ; 43(2): 845-867, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34449545

RESUMO

This review discusses the current testing methodologies for COVID-19 diagnosis and explores next-generation sequencing (NGS) technology for the detection of SARS-CoV-2 and monitoring phylogenetic evolution in the current COVID-19 pandemic. The review addresses the development, fundamentals, assay quality control and bioinformatics processing of the NGS data. This article provides a comprehensive review of the obstacles and opportunities facing the application of NGS technologies for the diagnosis, surveillance, and study of SARS-CoV-2 and other infectious diseases. Further, we have contemplated the opportunities and challenges inherent in the adoption of NGS technology as a diagnostic test with real-world examples of its utility in the fight against COVID-19.


Assuntos
COVID-19/virologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/genética , Biologia Computacional/métodos , Humanos , Epidemiologia Molecular/métodos , Pandemias , Filogenia , SARS-CoV-2/isolamento & purificação
3.
Int J Mol Sci ; 20(15)2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31387239

RESUMO

Colorectal cancer (CRC) is a high burden disease with several genes involved in tumor progression. The aim of the present study was to identify, generate and clinically validate a novel gene signature to improve prediction of overall survival (OS) to effectively manage colorectal cancer. We explored The Cancer Genome Atlas (TCGA), COAD and READ datasets (597 samples) from The Protein Atlas (TPA) database to extract a total of 595 candidate genes. In parallel, we identified 29 genes with perturbations in > 6 cancers which are also affected in CRC. These genes were entered in cBioportal to generate a 17 gene panel with highest perturbations. For clinical validation, this gene panel was tested on the FFPE tissues of colorectal cancer patients (88 patients) using Nanostring analysis. Using multivariate analysis, a high prognostic score (composite 4 gene signature-DPP7/2, YWHAB, MCM4 and FBXO46) was found to be a significant predictor of poor prognosis in CRC patients (HR: 3.42, 95% CI: 1.71-7.94, p < 0.001 *) along with stage (HR: 4.56, 95% CI: 1.35-19.15, p = 0.01 *). The Kaplan-Meier analysis also segregated patients on the basis of prognostic score (log-rank test, p = 0.001 *). The external validation using GEO dataset (GSE38832, 122 patients) corroborated the prognostic score (HR: 2.7, 95% CI: 1.99-3.73, p < 0.001 *). Additionally, higher score was able to differentiate stage II and III patients (130 patients) on the basis of OS (HR: 2.5, 95% CI: 1.78-3.63, p < 0.001 *). Overall, our results identify a novel 4 gene prognostic signature that has clinical utility in colorectal cancer.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Transcriptoma , Idoso , Idoso de 80 Anos ou mais , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/terapia , Terapia Combinada , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Curva ROC
4.
Int J Mol Sci ; 19(9)2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158456

RESUMO

Recent evidence suggests that myeloid cells are critical in cancer development and therapy resistance processes. Pharmacological targeting of tumor-associated myeloid cells is an emerging approach among upcoming immune therapies. Surprisingly, myeloid cells are heterogeneous, including a subset of the myeloid cell displaying angiogenic properties in solid tumors. There is an urgent need to delineate angiogenic myeloid cell populations in order to facilitate specific targeting of protumor myeloid cells among heterogeneous pool. This review article is intended to compile all the relevant information in the literature for improved understanding of angiogenic myeloid cells and their role in tumor refractoriness to cancer therapy.


Assuntos
Células Mieloides/citologia , Células Mieloides/fisiologia , Neoplasias/radioterapia , Neoplasias/terapia , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Humanos , Imunoterapia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Receptor TIE-2/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
Genes (Basel) ; 15(4)2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38674331

RESUMO

Copy number alterations (CNAs) are significant in tumor initiation and progression. Identifying these aberrations is crucial for targeted therapies and personalized cancer diagnostics. Next-generation sequencing (NGS) methods present advantages in scalability and cost-effectiveness, surpassing limitations associated with reference assemblies and probe capacities in traditional laboratory approaches. This retrospective study evaluated CNAs in 50 FFPE tumor samples (breast cancer, ovarian carcinoma, pancreatic cancer, melanoma, and prostate carcinoma) using Illumina's TruSight Oncology 500 (TSO500) and the Affymetrix Oncoscan Molecular Inversion Probe (OS-MIP) (ThermoFisher Scientific, Waltham, MA, USA). NGS analysis with the NxClinical 6.2 software demonstrated a high sensitivity and specificity (100%) for CNA detection, with a complete concordance rate as compared to the OS-MIP. All 54 known CNAs were identified by NGS, with gains being the most prevalent (63%). Notable CNAs were observed in MYC (18%), TP53 (12%), BRAF (8%), PIK3CA, EGFR, and FGFR1 (6%) genes. The diagnostic parameters exhibited high accuracy, including a positive predictive value, negative predictive value, and overall diagnostic accuracy. This study underscores NxClinical as a reliable software for identifying clinically relevant gene alterations using NGS TSO500, offering valuable insights for personalized cancer treatment strategies based on CNA analysis.


Assuntos
Variações do Número de Cópias de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias , Software , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Feminino , Masculino , Neoplasias/genética , Estudos Retrospectivos
6.
Viruses ; 16(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38932146

RESUMO

The novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged as one of the most significant global health crises in recent history. The clinical characteristics of COVID-19 patients have revealed the possibility of immune activity changes contributing to disease severity. Nevertheless, limited information is available regarding the immune response in human lung tissue, which is the primary site of infection. In this study, we conducted an extensive analysis of lung tissue to screen for differentially expressed miRNAs and mRNAs in five individuals who died due to COVID-19 and underwent a rapid autopsy, as well as seven control individuals who died of other causes unrelated to COVID-19. To analyze the host response gene expression, miRNA microarray and Nanostring's nCounter XT gene expression assay were performed. Our study identified 37 downregulated and 77 upregulated miRNAs in COVID-19 lung biopsy samples compared to the controls. A total of 653 mRNA transcripts were differentially expressed between the two sample types, with most transcripts (472) being downregulated in COVID-19-positive specimens. Hierarchical and PCA K-means clustering analysis showed distinct clustering between COVID-19 and control samples. Enrichment and network analyses revealed differentially expressed genes important for innate immunity and inflammatory response in COVID-19 lung biopsies. The interferon-signaling pathway was highly upregulated in COVID-19 specimens while genes involved in interleukin-17 signaling were downregulated. These findings shed light on the mechanisms of host cellular responses to COVID-19 infection in lung tissues and could help identify new targets for the prevention and treatment of COVID-19 infection.


Assuntos
Autopsia , COVID-19 , Redes Reguladoras de Genes , Pulmão , MicroRNAs , SARS-CoV-2 , Humanos , COVID-19/genética , COVID-19/virologia , COVID-19/imunologia , Pulmão/virologia , Pulmão/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Perfilação da Expressão Gênica , RNA Mensageiro/genética , Adulto
7.
Diagnostics (Basel) ; 14(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39202254

RESUMO

BACKGROUND: Multidrug-resistant HIV strains challenge treatment efficacy and increase mortality rates. Next-generation sequencing (NGS) technology swiftly detects variants, facilitating personalized antiretroviral therapy. AIM: This study aimed to validate the Vela Diagnostics NGS platform for HIV drug resistance mutation analysis, rigorously assessed with clinical samples and CAP proficiency testing controls previously analyzed by Sanger sequencing. METHOD: The experimental approach involved the following: RNA extraction from clinical specimens, reverse transcription polymerase chain reaction (RT-PCR) utilizing the Sentosa SX 101 platform, library preparation with the Sentosa SQ HIV Genotyping Assay, template preparation, sequencing using the Sentosa SQ301 instrument, and subsequent data analysis employing the Sentosa SQ Suite and SQ Reporter software. Drug resistance profiles were interpreted using the Stanford HIV Drug Resistance Database (HIVdb) with the HXB2 reference sequence. RESULTS: The Vela NGS system successfully identified a comprehensive array of drug resistance mutations across the tested samples: 28 nucleoside reverse transcriptase inhibitors (NRTI), 25 non-nucleoside reverse transcriptase inhibitors (NNRTI), 25 protease inhibitors (PI), and 10 integrase gene-specific variants. Dilution experiments further validated the system's sensitivity, detecting drug resistance mutations even at viral loads lower than the recommended threshold (1000 copies/mL) set by Vela Diagnostics. SCOPE: This study underscores the validation and clinical applicability of the Vela NGS system, and its implementation may offer clinicians enhanced precision in therapeutic decision-making for individuals living with HIV.

8.
Viruses ; 16(8)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39205157

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease (COVID-19), induced a global pandemic with a diverse array of clinical manifestations. While the acute phase of the pandemic may be waning, the intricacies of COVID-19's impact on neurological health remain a crucial area of investigation. Early recognition of the spectrum of COVID-19 symptoms, ranging from mild fever and cough to life-threatening respiratory distress and multi-organ failure, underscored the significance of neurological complications, including anosmia, seizures, stroke, disorientation, encephalopathy, and paralysis. Notably, patients requiring intensive care unit (ICU) admission due to neurological challenges or due to them exhibiting neurological abnormalities in the ICU have shown increased mortality rates. COVID-19 can lead to a range of neurological complications such as anosmia, stroke, paralysis, cranial nerve deficits, encephalopathy, delirium, meningitis, seizures, etc., in affected patients. This review elucidates the burgeoning landscape of neurological sequelae associated with SARS-CoV-2 infection and explores the underlying neurobiological mechanisms driving these diverse manifestations. A meticulous examination of potential neuroinvasion routes by SARS-CoV-2 underscores the intricate interplay between the virus and the nervous system. Moreover, we dissect the diverse neurological manifestations emphasizing the necessity of a multifaceted approach to understanding the disease's neurological footprint. In addition to elucidating the pathophysiological underpinnings, this review surveys current therapeutic modalities and delineates prospective avenues for neuro-COVID research. By integrating epidemiological, clinical, and diagnostic parameters, we endeavor to foster a comprehensive analysis of the nexus between COVID-19 and neurological health, thereby laying the groundwork for targeted therapeutic interventions and long-term management strategies.


Assuntos
COVID-19 , Doenças do Sistema Nervoso , SARS-CoV-2 , Humanos , COVID-19/complicações , COVID-19/fisiopatologia , Doenças do Sistema Nervoso/virologia , Doenças do Sistema Nervoso/fisiopatologia , Doenças do Sistema Nervoso/etiologia , Convulsões/fisiopatologia , Convulsões/virologia , Convulsões/etiologia
9.
Biomedicines ; 12(8)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39200124

RESUMO

A glioma is a solid brain tumor which originates in the brain or brain stem area. The diagnosis of gliomas based on standard-of-care (SOC) techniques includes karyotyping, fluorescence in situ hybridization (FISH), and chromosomal microarray (CMA), for detecting the pathogenic variants and chromosomal abnormalities. But these techniques do not reveal the complete picture of genetic complexity, thus requiring an alternative technology for better characterization of these tumors. The present study aimed to evaluate the clinical performance and feasibility of using optical genome mapping (OGM) for chromosomal characterization of gliomas. Herein, we evaluated 10 cases of gliomas that were previously characterized by CMA. OGM analysis showed concordance with the results of CMA in identifying the characterized Structural Variants (SVs) in these cases. More notably, it also revealed additional clinically relevant aberrations, demonstrating a higher resolution and sensitivity. These clinically relevant SVs included cryptic translocation, and SVs which are beyond the detection capabilities of CMA. Our analysis highlights the unique capability of OGM to detect all classes of SVs within a single assay, thereby unveiling clinically significant data with a shorter turnaround time. Adopting this diagnostic tool as a standard of care for solid tumors like gliomas shows potential for improving therapeutic management, potentially leading to more personalized and timely interventions for patients.

10.
Cancers (Basel) ; 16(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38339232

RESUMO

Colorectal cancer (CRC) is one of the most heterogeneous and deadly diseases, with a global incidence of 1.5 million cases per year. Genomics has revolutionized the clinical management of CRC by enabling comprehensive molecular profiling of cancer. However, a deeper understanding of the molecular factors is needed to identify new prognostic and predictive markers that can assist in designing more effective therapeutic regimens for the improved management of CRC. Recent breakthroughs in single-cell analysis have identified new cell subtypes that play a critical role in tumor progression and could serve as potential therapeutic targets. Spatial analysis of the transcriptome and proteome holds the key to unlocking pathogenic cellular interactions, while liquid biopsy profiling of molecular variables from serum holds great potential for monitoring therapy resistance. Furthermore, gene expression signatures from various pathways have emerged as promising prognostic indicators in colorectal cancer and have the potential to enhance the development of equitable medicine. The advancement of these technologies for identifying new markers, particularly in the domain of predictive and personalized medicine, has the potential to improve the management of patients with CRC. Further investigations utilizing similar methods could uncover molecular subtypes specific to emerging therapies, potentially strengthening the development of personalized medicine for CRC patients.

11.
Geroscience ; 46(6): 5439-5457, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38733547

RESUMO

Traumatic brain injury (TBI) is one of the foremost causes of disability and mortality globally. While the scientific and medical emphasis is to save lives and avoid disability during acute period of injury, a severe health problem can manifest years after injury. For instance, TBI increases the risk of cognitive impairment in the elderly. Remote TBI history was reported to be a cause of the accelerated clinical trajectory of Alzheimer's disease-related dementia (ADRD) resulting in earlier onset of cognitive impairment and increased AD-associated pathological markers like greater amyloid deposition and cortical thinning. It is not well understood whether a single TBI event may increase the risk of dementia. Moreover, the cellular signaling pathways remain elusive for the chronic effects of TBI on cognition. We have hypothesized that a single TBI induces sustained neuroinflammation and disrupts cellular communication in a way that results later in ADRD pathology. To test this, we induced TBI in young adult CD1 mice and assessed the behavioral outcomes after 11 months followed by pathological, histological, transcriptomic, and MRI assessment. On MRI scans, these mice showed significant loss of tissue, reduced CBF, and higher white matter injury compared to sham mice. We found these brains showed progressive atrophy, markers of ADRD, sustained astrogliosis, loss of neuronal plasticity, and growth factors even after 1-year post-TBI. Because of progressive neurodegeneration, these mice had motor deficits, showed cognitive impairments, and wandered randomly in open field. We, therefore, conclude that progressive pathology after adulthood TBI leads to neurodegenerative conditions such as ADRD and impairs neuronal functions.


Assuntos
Doença de Alzheimer , Lesões Encefálicas Traumáticas , Modelos Animais de Doenças , Animais , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/fisiopatologia , Camundongos , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Demência/etiologia , Encéfalo/patologia
12.
Leuk Lymphoma ; : 1-10, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967518

RESUMO

This study investigates COVID-19 outcomes and immune response in chronic myeloid leukemia (CML) patients post-SARS-CoV-2 vaccination, comparing effectiveness of various vaccine options. Data from 118 CML patients (85 in Brazil, 33 in the US) showed similar infection rates prior (14% Brazil, 9.1% US) and post-vaccination (24.7% vs. 27.3%, respectively). In Brazil, AstraZeneca and CoronaVac were the most commonly used vaccine brands, while in the US, Moderna and Pfizer-BioNTech vaccines dominated. Despite lower seroconversion in the Brazilian cohort, all five vaccine brands analyzed prevented severe COVID-19. Patients who received mRNA and recombinant viral vector vaccines (HR: 2.20; 95%CI 1.07-4.51; p < .031) and those that had achieved at least major molecular response (HR: 1.51; 95% CI 1.01-3.31; p < .0001) showed higher seroconversion rates. Our findings suggest that CML patients can generate antibody responses regardless of the vaccine brand, thereby mitigating severe COVID-19. This effect is more pronounced in patients with well-controlled disease.

13.
Physiol Genomics ; 45(13): 509-20, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23673729

RESUMO

Type 2 diabetes (T2D)-associated SNPs are more likely to be expression quantitative trait loci (eQTLs). The allelic expression imbalance (AEI) analysis is the measure of relative expression between two allelic transcripts and is the most sensitive measurement to detect cis-regulatory effects. We performed AEI screening to detect cis-regulators for genes expressed in transformed lymphocytes of 190 Caucasian (CA) and African American (AA) subjects to identify functional variants for T2D susceptibility in the chromosome 1q21-24 region of linkage. Among transcribed SNPs studied in 115 genes, significant AEI (P < 0.001) occurred in 28 and 30 genes in CA and AA subjects, respectively. Analysis of the effect of selected AEI-SNPs (≥10% mean AEI) on total gene expression further established the cis-eQTLs in thioesterase superfamily member-4 (THEM4) (rs13320, P = 0.027), and IGSF8 (rs1131891, P = 0.02). Examination of published genome-wide association data identified significant associations (P < 0.01) of three AEI-SNPs with T2D in the DIAGRAM-v3 dataset. Six AEI single nucleotide polymorphisms, including rs13320 (P = 1.35E-04) in THEM4, were associated with glucose homeostasis traits in the MAGIC dataset. Evaluation of AEI-SNPs for association with glucose homeostasis traits in 611 nondiabetic subjects showed lower AIRG (P = 0.005) in those with TT/TC genotype for rs13320. THEM4 expression in adipose was higher (P = 0.005) in subjects carrying the T allele; in vitro analysis with luciferase construct confirmed the higher expression of the T allele. Resequencing of THEM4 exons in 192 CA subjects revealed four coding nonsynonymous variants, but did not explain transmission of T2D in 718 subjects from 67 Caucasian pedigrees. Our study indicates the role of a cis-regulatory SNP in THEM4 that may influence T2D predisposition by modulating glucose homeostasis.


Assuntos
Desequilíbrio Alélico/genética , Cromossomos Humanos Par 1/genética , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Testes Genéticos , Polimorfismo de Nucleotídeo Único/genética , Regiões 3' não Traduzidas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Negro ou Afro-Americano/genética , Estudos de Casos e Controles , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Glucose/metabolismo , Células HEK293 , Homeostase/genética , Humanos , Luciferases/metabolismo , Proteínas de Membrana/genética , Fenótipo , Característica Quantitativa Herdável , Receptores Imunológicos/genética , Tioléster Hidrolases/genética , População Branca/genética
14.
Curr Protoc ; 3(10): e910, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37888957

RESUMO

Optical genome mapping (OGM) is a next-generation cytogenomic technology that has the potential to replace standard-of-care technologies used in the genetic workup of various malignancies. The ability to detect various classes of structural variations that include copy number variations, deletions, duplications, balanced and unbalanced events (insertions, inversions, and translocation) and complex genomic rearrangements in a single assay and analysis demonstrates the utility of the technology in tumor research and clinical application. Herein, we provide the methodological details for performing OGM and pre- and post-analytical quality control (QC) checks and describe critical steps that should be performed with caution, probable causes for specific QC failures, and potential method modifications that could be implemented as part of troubleshooting. The protocol description and troubleshooting guide should help new and current users of the technology to improve or troubleshoot the problems (if any) in their workflow. © 2023 Wiley Periodicals LLC. Basic Protocol: Optical genome mapping.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Humanos , Genoma , Genômica/métodos , Neoplasias/diagnóstico , Neoplasias/genética , Mapeamento Cromossômico
15.
Viruses ; 15(3)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36992366

RESUMO

The emergence of COVID-19 has led to significant morbidity and mortality, with around seven million deaths worldwide as of February 2023. There are several risk factors such as age and sex that are associated with the development of severe symptoms due to COVID-19. There have been limited studies that have explored the role of sex differences in SARS-CoV-2 infection. As a result, there is an urgent need to identify molecular features associated with sex and COVID-19 pathogenesis to develop more effective interventions to combat the ongoing pandemic. To address this gap, we explored sex-specific molecular factors in both mouse and human datasets. The host immune targets such as TLR7, IRF7, IRF5, and IL6, which are involved in the immune response against viral infections, and the sex-specific targets such as AR and ESSR were taken to investigate any possible link with the SARS-CoV-2 host receptors ACE2 and TMPRSS2. For the mouse analysis, a single-cell RNA sequencing dataset was used, while bulk RNA-Seq datasets were used to analyze the human clinical data. Additional databases such as the Database of Transcription Start Sites (DBTS), STRING-DB, and the Swiss Regulon Portal were used for further analysis. We identified a 6-gene signature that showed differential expression in males and females. Additionally, this gene signature showed potential prognostic utility by differentiating ICU patients from non-ICU patients due to COVID-19. Our study highlights the importance of assessing sex differences in SARS-CoV-2 infection, which can assist in the optimal treatment and better vaccination strategies.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Feminino , Masculino , Animais , Camundongos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , COVID-19/genética , Peptidil Dipeptidase A/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Fatores Imunológicos , Fatores Reguladores de Interferon/metabolismo
16.
J Mol Diagn ; 25(4): 234-246, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36758723

RESUMO

The standard-of-care diagnostic prenatal testing includes a combination of cytogenetic methods, such as karyotyping, fluorescence in situ hybridization (FISH), and chromosomal microarray (CMA), using either direct or cultured amniocytes or chorionic villi sampling. However, each technology has its limitations: karyotyping has a low resolution (>5 Mb), FISH is targeted, and CMA does not detect balanced structural variations (SVs). These limitations necessitate the use of multiple tests, either simultaneously or sequentially, to reach a genetic diagnosis. Optical genome mapping (OGM) is an emerging technology that can detect several classes of SVs in a single assay, but it has not been evaluated in the prenatal setting. This validation study analyzed 114 samples that were received in our laboratory for traditional cytogenetic analysis with karyotyping, FISH, and/or CMA. OGM was 100% concordant in identifying the 101 aberrations that included 29 interstitial/terminal deletions, 28 duplications, 26 aneuploidies, 6 absence of heterozygosity regions, 3 triploid genomes, 4 isochromosomes, and 1 translocation; and the method revealed the identity of 3 marker chromosomes and 1 chromosome with additional material not determined by karyotyping. In addition, OGM detected 64 additional clinically reportable SVs in 43 samples. OGM has a standardized laboratory workflow and reporting solution that can be adopted in routine clinical laboratories and demonstrates the potential to replace the current standard-of-care methods for prenatal diagnostic testing.


Assuntos
Aneuploidia , Transtornos Cromossômicos , Gravidez , Feminino , Humanos , Hibridização in Situ Fluorescente , Análise Citogenética/métodos , Cariotipagem , Mapeamento Cromossômico , Aberrações Cromossômicas , Diagnóstico Pré-Natal/métodos , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética
17.
Br Dent J ; 234(8): 593-600, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37117367

RESUMO

Introduction The purpose of this study was to test the short-term efficacy of four commercial mouthwashes versus water in reducing SARS-CoV-2 viral load in the oral cavity over clinically relevant time points.Methods In total, 32 subjects that were proven SARS-CoV-2-positive via polymerase chain reaction (PCR)-based diagnostic test were recruited and randomised into five parallel arms. Cycle threshold (Ct) values were compared in saliva samples between the groups, as well as within the groups at baseline (pre-rinse), zero hours, one hour and two hours post-rinse, using SARS-CoV-2 reverse transcription-PCR analysis.Results We observed a significant increase in Ct values in saliva samples collected immediately after rinsing with all the four mouthwashes - 0.12% chlorhexidine gluconate, 1.5% hydrogen peroxide, 1% povidone iodine, or Listerine - compared to water. A sustained increase in Ct values for up to two hours was only observed in the Listerine and chlorohexidine gluconate groups. We were not able to sufficiently power this clinical trial, so the results remain notional but encouraging and supportive of findings in other emerging mouthwash studies on COVID-19, warranting additional investigations.Conclusions Our evidence suggests that in a clinical setting, prophylactic rinses with Listerine or chlorhexidine gluconate can potentially reduce SARS-CoV-2 viral load in the oral cavity for up to two hours. While limited in statistical power due to the difficulty in obtaining this data, we advocate for pre-procedural mouthwashing, like handwashing, as an economical and safe additional precaution to help mitigate the transmission of SARS-CoV-2 from a potentially infected patient to providers.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Antissépticos Bucais/uso terapêutico , COVID-19/prevenção & controle , Carga Viral
18.
Genes (Basel) ; 14(9)2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37761823

RESUMO

Homologous recombination deficiency (HRD) is characterized by the inability of a cell to repair the double-stranded breaks using the homologous recombination repair (HRR) pathway. The deficiency of the HRR pathway results in defective DNA repair, leading to genomic instability and tumorigenesis. The presence of HRD has been found to make tumors sensitive to ICL-inducing platinum-based therapies and poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) inhibitors (PARPi). However, there are no standardized methods to measure and report HRD phenotypes. Herein, we compare optical genome mapping (OGM), chromosomal microarray (CMA), and a 523-gene NGS panel for HRD score calculations. This retrospective study included the analysis of 196 samples, of which 10 were gliomas, 176 were hematological malignancy samples, and 10 were controls. The 10 gliomas were evaluated with both CMA and OGM, and 30 hematological malignancy samples were evaluated with both the NGS panel and OGM. To verify the scores in a larger cohort, 135 cases were evaluated with the NGS panel and 71 cases with OGM. The HRD scores were calculated using a combination of three HRD signatures that included loss of heterozygosity (LOH), telomeric allelic imbalance (TAI), and large-scale transitions (LST). In the ten glioma cases analyzed with OGM and CMA using the same DNA (to remove any tumor percentage bias), the HRD scores (mean ± SEM) were 13.2 (±4.2) with OGM compared to 3.7 (±1.4) with CMA. In the 30 hematological malignancy cases analyzed with OGM and the 523-gene NGS panel, the HRD scores were 7.6 (±2.2) with OGM compared to 2.6 (±0.8) with the 523-gene NGS panel. OGM detected 70.8% and 66.8% of additional variants that are considered HRD signatures in gliomas and hematological malignancies, respectively. The higher sensitivity of OGM to capture HRD signature variants might enable a more accurate and precise correlation with response to PARPi and platinum-based drugs. This study reveals HRD signatures that are cryptic to current standard of care (SOC) methods used for assessing the HRD phenotype and presents OGM as an attractive alternative with higher resolution and sensitivity to accurately assess the HRD phenotype.


Assuntos
Glioma , Neoplasias Hematológicas , Humanos , Estudos Retrospectivos , Glioma/genética , Pentosiltransferases , Poli(ADP-Ribose) Polimerases , Recombinação Homóloga , Mapeamento Cromossômico
19.
Cancers (Basel) ; 15(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37370824

RESUMO

The standard-of-care (SOC) for genomic testing of myeloid cancers primarily relies on karyotyping/fluorescent in situ hybridization (FISH) (cytogenetic analysis) and targeted gene panels (usually ≤54 genes) that harbor hotspot pathogenic variants (molecular genetic analysis). Despite this combinatorial approach, ~50% of myeloid cancer genomes remain cytogenetically normal, and the limited sequencing variant profiles obtained from targeted panels are unable to resolve the molecular etiology of many myeloid tumors. In this study, we evaluated the performance and clinical utility of combinatorial use of optical genome mapping (OGM) and a 523-gene next-generation sequencing (NGS) panel for comprehensive genomic profiling of 30 myeloid tumors and compared it to SOC cytogenetic methods (karyotyping and FISH) and a 54-gene NGS panel. OGM and the 523-gene NGS panel had an analytical concordance of 100% with karyotyping, FISH, and the 54-gene panel, respectively. Importantly, the IPSS-R cytogenetic risk group changed from very good/good to very poor in 22% of MDS (2/9) cases based on comprehensive profiling (karyotyping, FISH, and 54-gene panel vs. OGM and 523-gene panel), while additionally identifying six compound heterozygous events of potential clinical relevance in six cases (6/30, 20%). This cost-effective approach of using OGM and a 523-gene NGS panel for comprehensive genomic profiling of myeloid cancers demonstrated increased yield of actionable targets that can potentially result in improved clinical outcomes.

20.
Biomolecules ; 13(1)2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36671517

RESUMO

Several studies have identified rare and common genetic variants associated with severe COVID-19, but no study has reported genetic determinants as predisposition factors for neurological complications. In this report, we identified rare/unique structural variants (SVs) implicated in neurological functions in two individuals with neurological manifestations of COVID-19. This report highlights the possible genetic link to the neurological symptoms with COVID-19 and calls for a collective effort to study these cohorts for a possible genetic linkage.


Assuntos
COVID-19 , Doenças do Sistema Nervoso , Humanos , COVID-19/complicações , COVID-19/genética , Predisposição Genética para Doença , Doenças do Sistema Nervoso/genética , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA