Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Coord Chem Rev ; 4292021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33678810

RESUMO

Porphyrins are important molecules widely found in nature in the form of enzyme active sites and visible light absorption units. Recent interest in using these functional molecules as building blocks for the construction of metal-organic frameworks (MOFs) have rapidly increased due to the ease in which the locations of, and the distances between, the porphyrin units can be controlled in these porous crystalline materials. Porphyrin-based MOFs with atomically precise structures provide an ideal platform for the investigation of their structure-function relationships in the solid state without compromising accessibility to the inherent properties of the porphyrin building blocks. This review will provide a historical overview of the development and applications of porphyrin-based MOFs from early studies focused on design and structures, to recent efforts on their utilization in biomimetic catalysis, photocatalysis, electrocatalysis, sensing, and biomedical applications.

2.
Nat Mater ; 14(5): 512-6, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25774952

RESUMO

Chemical warfare agents containing phosphonate ester bonds are among the most toxic chemicals known to mankind. Recent global military events, such as the conflict and disarmament in Syria, have brought into focus the need to find effective strategies for the rapid destruction of these banned chemicals. Solutions are needed for immediate personal protection (for example, the filtration and catalytic destruction of airborne versions of agents), bulk destruction of chemical weapon stockpiles, protection (via coating) of clothing, equipment and buildings, and containment of agent spills. Solid heterogeneous materials such as modified activated carbon or metal oxides exhibit many desirable characteristics for the destruction of chemical warfare agents. However, low sorptive capacities, low effective active site loadings, deactivation of the active site, slow degradation kinetics, and/or a lack of tailorability offer significant room for improvement in these materials. Here, we report a carefully chosen metal-organic framework (MOF) material featuring high porosity and exceptional chemical stability that is extraordinarily effective for the degradation of nerve agents and their simulants. Experimental and computational evidence points to Lewis-acidic Zr(IV) ions as the active sites and to their superb accessibility as a defining element of their efficacy.

3.
J Am Chem Soc ; 137(4): 1658-62, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25611764

RESUMO

Herein, we describe a strategy for converting catalytically inactive, highly crystalline nanoparticle superlattices embedded in silica into catalytically active, porous structures through superlattice assembly and calcination. First, a body-centered cubic (bcc) superlattice is synthesized through the assembly of two sets of 5 nm gold nanoparticles chemically modified with DNA bearing complementary sticky end sequences. These superlattices are embedded in silica and calcined at 350 °C to provide access to the catalytic nanoparticle surface sites. The calcined superlattice maintains its bcc ordering and has a surface area of 210 m(2)/g. The loading of catalytically active nanoparticles within the superlattice was determined by inductively coupled plasma mass spectrometry, which revealed that the calcined superlattice contained approximately 10% Au by weight. We subsequently investigate the ability of supported Au nanoparticle superlattices to catalyze alcohol oxidation. In addition to demonstrating that calcined superlattices are effective catalysts for alcohol oxidation, electron microscopy reveals preservation of the crystalline structure of the bcc superlattice following calcination and catalysis. Unlike many bulk nanoparticle catalysts, which are difficult to characterize and susceptible to aggregation, nanoparticle superlattices synthesized using DNA interactions offer an attractive bottom-up route to structurally defined heterogeneous catalysts, where one has the potential to independently control nanoparticle size, nanoparticle compositions, and interparticle spacings.


Assuntos
DNA/química , Ouro/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Dióxido de Silício/química , Álcoois Benzílicos/química , Catálise , Nanotecnologia , Oxirredução , Porosidade
4.
J Am Chem Soc ; 137(10): 3585-91, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25723400

RESUMO

An isoreticular series of metal-organic frameworks (MOFs) with the ftw topology based on zirconium oxoclusters and tetracarboxylate linkers with a planar core (NU-1101 through NU-1104) has been synthesized employing a linker expansion approach. In this series, NU-1103 has a pore volume of 2.91 cc g(-1) and a geometrically calculated surface area of 5646 m(2) g(-1), which is the highest value reported to date for a zirconium-based MOF and among the largest that have been reported for any porous material. Successful activation of the MOFs was proven based on the agreement of pore volumes and BET areas obtained from simulated and experimental isotherms. Critical for practical applications, NU-1103 combines for the first time ultrahigh surface area and water stability, where this material retained complete structural integrity after soaking in water. Pressure range selection for the BET calculations on these materials was guided by the four so-called "consistency criteria". The experimental BET area of NU-1103 was 6550 m(2) g(-1). Insights obtained from molecular simulation suggest that, as a consequence of pore-filling contamination, the BET method overestimates the monolayer loading of NU-1103 by ∼16%.

5.
Inorg Chem ; 54(22): 10829-33, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26505999

RESUMO

The nerve agent VX is among the most toxic chemicals known to mankind, and robust solutions are needed to rapidly and selectively deactivate it. Herein, we demonstrate that three Zr6-based metal-organic frameworks (MOFs), namely, UiO-67, UiO-67-NH2, and UiO-67-N(Me)2, are selective and highly active catalysts for the hydrolysis of VX. Utilizing UiO-67, UiO-67-NH2, and UiO-67-N(Me)2 in a pH 10 buffered solution of N-ethylmorpholine, selective hydrolysis of the P-S bond in VX was observed. In addition, UiO-67-N(Me)2 was found to catalyze VX hydrolysis with an initial half-life of 1.8 min. This half-life is nearly 3 orders of magnitude shorter than that of the only other MOF tested to date for hydrolysis of VX and rivals the activity of the best nonenzymatic materials. Hydrolysis utilizing Zr-based MOFs is also selective and facile in the absence of pH 10 buffer (just water) and for the destruction of the toxic byproduct EA-2192.


Assuntos
Substâncias para a Guerra Química/química , Complexos de Coordenação/química , Poluentes Ambientais/química , Organofosfonatos/química , Compostos Organotiofosforados/química , Propilaminas/química , Zircônio/química , Recuperação e Remediação Ambiental , Hidrólise
6.
Inorg Chem ; 54(15): 7142-4, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26192323

RESUMO

Solvent-assisted linker exchange (SALE) has recently emerged as an attractive strategy for the synthesis of metal-organic frameworks (MOFs) that are unobtainable via traditional synthetic pathways. Herein we present the first example of selective SALE in which only the benzimiadazolate-containing linkers in a series of mixed-linker zeolitic imidazolate frameworks (ZIF-69, -78, and -76) are replaced. The resultant materials (SALEM-10, SALEM-10b, and SALEM-11, respectively) are isostructural to the parent framework and in each case contain trifluoromethyl moieties. We therefore evaluated each of these materials for their hydrophobicity in condensed and gas phases. We expect that selective SALE will significantly facilitate the design of improved, and potentially complex, MOF materials with new and unusual properties.

7.
Chem Soc Rev ; 43(16): 5896-912, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24723093

RESUMO

Metal-organic frameworks (MOFs) are hybrid porous materials with many potential applications, which intimately depend on the presence of chemical functionality either at the organic linkers and/or at the metal nodes. Functionality that cannot be introduced into MOFs directly via de novo syntheses can be accessed through post-synthesis modification (PSM) on the reactive moieties of the linkers and/or nodes without disrupting the metal-linker bonds. Even more intriguing methods that go beyond PSM are herein termed building block replacement (BBR) which encompasses (i) solvent-assisted linker exchange (SALE), (ii) non-bridging ligand replacement, and (iii) transmetalation. These one-step or tandem BBR processes involve exchanging key structural components of the MOF, which in turn should allow for the evolution of protoMOF structures (i.e., the utilization of a parent MOF as a template) to design MOFs composed of completely new components, presumably via single crystal to single crystal transformations. The influence of building block replacement on the stability and properties of MOFs will be discussed, and some insights into their mechanistic aspects are provided. Future perspectives providing a glimpse into how these techniques can lead to various unexplored areas of MOF chemistry are also presented.

8.
J Am Chem Soc ; 136(5): 1930-41, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24444431

RESUMO

Product stoichiometry, particle-size defocusing, and kinetic evidence are reported consistent with and supportive of a four-step mechanism of supported transition-metal nanoparticle formation in contact with solution: slow continuous nucleation, A → B (rate constant k1), autocatalytic surface growth, A + B → 2B (rate constant k2), bimolecular agglomeration, B + B → C (rate constant k3), and secondary autocatalytic surface growth, A + C → 1.5C (rate constant k4), where A is nominally the Ir(1,5-COD)Cl/γ-Al2O3 precursor, B the growing Ir(0) particles, and C the larger, catalytically active nanoparticles. The significance of this work is at least 4-fold: first, this is the first documentation of a four-step mechanism for supported-nanoparticle formation in contact with solution. Second, the proposed four-step mechanism, which was obtained following the disproof of 18 alternative mechanisms, is a new four-step mechanism in which the new fourth step is A + C → 1.5C in the presence of the solid, γ-Al2O3 support. Third, the four-step mechanism provides rare, precise chemical and kinetic precedent for metal particle nucleation, growth, and now agglomeration (B + B → C) and secondary surface autocatalytic growth (A + C → 1.5C) involved in supported-nanoparticle heterogeneous catalyst formation in contact with solution. Fourth, one now has firm, disproof-based chemical-mechanism precedent for two specific, balanced pseudoelementary kinetic steps and their precise chemical descriptors of bimolecular particle agglomeration, B + B → C, and autocatalytic agglomeration, B + C → 1.5C, involved in, for example, nanoparticle catalyst sintering.

9.
Chemistry ; 20(39): 12389-93, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25123293

RESUMO

We designed, synthesized, and characterized a new Zr-based metal-organic framework material, NU-1100, with a pore volume of 1.53 ccg(-1) and Brunauer-Emmett-Teller (BET) surface area of 4020 m(2) g(-1) ; to our knowledge, currently the highest published for Zr-based MOFs. CH4 /CO2 /H2 adsorption isotherms were obtained over a broad range of pressures and temperatures and are in excellent agreement with the computational predictions. The total hydrogen adsorption at 65 bar and 77 K is 0.092 g g(-1) , which corresponds to 43 g L(-1) . The volumetric and gravimetric methane-storage capacities at 65 bar and 298 K are approximately 180 vSTP /v and 0.27 g g(-1) , respectively.

10.
Angew Chem Int Ed Engl ; 53(18): 4530-40, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24652755

RESUMO

Metal-organic frameworks (MOFs) have gained considerable attention as hybrid materials-in part because of a multitude of potential useful applications, ranging from gas separation to catalysis and light harvesting. Unfortunately, de novo synthesis of MOFs with desirable function-property combinations is not always reliable and may suffer from vagaries such as formation of undesirable topologies, low solubility of precursors, and loss of functionality of the sensitive network components. The recently discovered synthetic approach coined solvent-assisted linker exchange (SALE) constitutes a simple to implement strategy for circumventing these setbacks; its use has already led to the generation of a variety of MOF materials previously unobtainable by direct synthesis methods. This Review provides a perspective of the achievements in MOF research that have been made possible with SALE and examines the studies that have facilitated the understanding and broadened the scope of use of this invaluable synthetic tool.

11.
Angew Chem Int Ed Engl ; 53(2): 497-501, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24273208

RESUMO

Inspired by biology, in which a bimetallic hydroxide-bridged zinc(II)-containing enzyme is utilized to catalytically hydrolyze phosphate ester bonds, the utility of a zirconium(IV)-cluster-containing metal-organic framework as a catalyst for the methanolysis and hydrolysis of phosphate-based nerve agent simulants was examined. The combination of the strong Lewis-acidic Zr(IV) and bridging hydroxide anions led to ultrafast half-lives for these solvolysis reactions. This is especially remarkable considering that the actual catalyst loading was a mere 0.045 % as a result of the surface-only catalysis observed.


Assuntos
Materiais Biomiméticos/química , Substâncias para a Guerra Química/química , Compostos Organometálicos/química , Zinco/química , Zircônio/química , Hidrocarbonetos Aromáticos com Pontes/química , Catálise , Modelos Moleculares , Mimetismo Molecular , Estrutura Molecular , Sistema Nervoso/efeitos dos fármacos , Hidrolases de Triester Fosfórico/química , Porosidade , Relação Estrutura-Atividade
12.
J Am Chem Soc ; 135(31): 11529-32, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23876134

RESUMO

Detachment (desorption) of molecular dyes from photoelectrodes is one of the major limitations for the long-term operation of dye-sensitized solar cells. Here we demonstrate a method to greatly inhibit this loss by growing a transparent metal oxide (TiO2) on the dye-coated photoelectrode via atomic layer deposition (ALD). TiO2-enshrouded sensitizers largely resist detachment, even in pH 10.7 ethanol, a standard solution for intentional removal of molecular dyes from photoelectrodes. Additionally, the ALD post-treatment renders the otherwise hydrophobic dye-coated surface hydrophilic, thereby enhancing photoelectrode pore-filling with aqueous solution.

13.
J Am Chem Soc ; 135(45): 16801-4, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24175709

RESUMO

A new functionalization technique, solvent-assisted ligand incorporation (SALI), was developed to efficiently incorporate carboxylate-based functionalities in the Zr-based metal-organic framework, NU-1000. Unlike previous metal node functionalization strategies, which utilize dative bonding to coordinatively unsaturated metal sites, SALI introduces functional groups as charge compensating and strongly bound moieties to the Zr6 node. Utilizing SALI, we have efficiently attached perfluoroalkane carboxylates of various chain lengths (C1-C9) on the Zr6 nodes of NU-1000. These fluoroalkane-functionalized mesoporous MOFs, termed herein SALI-n, were studied experimentally and theoretically as potential CO2 capture materials.

14.
J Am Chem Soc ; 135(28): 10294-7, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23829224

RESUMO

Metal-organic frameworks (MOFs) have received attention for a myriad of potential applications including catalysis, gas storage, and gas separation. Coordinatively unsaturated metal ions often enable key functional behavior of these materials. Most commonly, MOFs have been metalated from the condensed phase (i.e., from solution). Here we introduce a new synthetic strategy capable of metallating MOFs from the gas phase: atomic layer deposition (ALD). Key to enabling metalation by ALD In MOFs (AIM) was the synthesis of NU-1000, a new, thermally stable, Zr-based MOF with spatially oriented -OH groups and large 1D mesopores and apertures.


Assuntos
Compostos Organometálicos/química , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Volatilização
15.
Inorg Chem ; 51(5): 3186-93, 2012 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-22356560

RESUMO

Reported herein is the synthesis of the previously unknown [Ir(1,5-COD)(µ-H)](4) (where 1,5-COD = 1,5-cyclooctadiene), from commercially available [Ir(1,5-COD)Cl](2) and LiBEt(3)H in the presence of excess 1,5-COD in 78% initial, and 55% recrystallized, yield plus its unequivocal characterization via single-crystal X-ray diffraction (XRD), X-ray absorption fine structure (XAFS) spectroscopy, electrospray/atmospheric pressure chemical ionization mass spectrometry (ESI-MS), and UV-vis, IR, and nuclear magnetic resonance (NMR) spectroscopies. The resultant product parallels--but the successful synthesis is different from, vide infra--that of the known and valuable Rh congener precatalyst and synthon, [Rh(1,5-COD)(µ-H)](4). Extensive characterization reveals that a black crystal of [Ir(1,5-COD)(µ-H)](4) is composed of a distorted tetrahedral, D(2d) symmetry Ir(4) core with two long [2.90728(17) and 2.91138(17) Å] and four short Ir-Ir [2.78680 (12)-2.78798(12) Å] bond distances. One 1,5-COD and two edge-bridging hydrides are bound to each Ir atom; the Ir-H-Ir span the shorter Ir-Ir bond distances. XAFS provides excellent agreement with the XRD-obtained Ir(4)-core structure, results which provide both considerable confidence in the XAFS methodology and set the stage for future XAFS in applications employing this Ir(4)H(4) and related tetranuclear clusters. The [Ir(1,5-COD)(µ-H)](4) complex is of interest for at least five reasons, as detailed in the Conclusions section.

16.
J Am Chem Soc ; 133(20): 7744-56, 2011 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-21526773

RESUMO

A current goal in heterogeneous catalysis is to transfer the synthetic, as well as developing mechanistic, insights from the modern revolution in nanoparticle science to the synthesis of supported-nanoparticle heterogeneous catalysts. In a recent study (Mondloch, J. E.; Wang, Q.; Frenkel, A. I.; Finke, R. G. J. Am. Chem. Soc. 2010, 132, 9701-9714), we initialized tests of the global hypothesis that quantitative kinetic and mechanistic studies, of supported-nanoparticle heterogeneous catalyst formation in contact with solution, can provide synthetic and mechanistic insights that can eventually drive improved syntheses of composition-, size-, and possibly shape-controlled catalysts. That study relied on the development of a well-characterized Ir(1,5-COD)Cl/γ-Al(2)O(3) precatalyst, which, when in contact with solution and H(2), turns into a nonaggregated Ir(0)(~900)/γ-Al(2)O(3) supported-nanoparticle heterogeneous catalyst. The kinetics of the Ir(1,5-COD)Cl/γ-Al(2)O(3) to Ir(0)(~900)/γ-Al(2)O(3) conversion were followed and fit by a two-step mechanism consisting of nucleation (A → B, rate constant k(1)) followed by autocatalytic surface growth (A + B → 2B, rate constant k(2)). However, a crucial, but previously unanswered question is whether the nucleation and growth steps occur primarily in solution, on the support, or possibly in both phases for one or more of the catalyst-formation steps. The present work investigates this central question for the prototype Ir(1,5-COD)Cl/γ-Al(2)O(3) to Ir(0)(~900)/γ-Al(2)O(3) system. Solvent variation-, γ-Al(2)O(3)-, and acetone-dependent kinetic data, along with UV-vis spectroscopic and gas-liquid-chromatography (GLC) data, are consistent with and strongly supportive of a supported-nanoparticle formation mechanism consisting of Ir(1,5-COD)Cl(solvent) dissociation from the γ-Al(2)O(3) support (i.e., from Ir(1,5-COD)Cl/γ-Al(2)O(3)), solution-based nucleation from that dissociated Ir(1,5-COD)Cl(solvent) species, fast Ir(0)(n) nanoparticle capture by γ-Al(2)O(3), and then subsequent solid-oxide-based nanoparticle growth from Ir(0)(n)/γ-Al(2)O(3) and with Ir(1,5-COD)Cl(solvent), the first kinetically documented mechanism of this type. Those data disprove a solid-oxide-based nucleation and growth pathway involving only Ir(1,5-COD)Cl/γ-Al(2)O(3) and also disprove a solution-based nanoparticle growth pathway involving Ir(1,5-COD)Cl(solvent) and Ir(0)(n) in solution. The present mechanistic studies allow comparisons of the Ir(1,5-COD)Cl/γ-Al(2)O(3) to Ir(0)(~900)/γ-Al(2)O(3) supported-nanoparticle formation system to the kinetically and mechanistically well-studied, Ir(1,5-COD)·P(2)W(15)Nb(3)O(62)(8-) to Ir(0)(~300)·(P(2)W(15)Nb(3)O(62)(8-))(n)(-8n) solution-based, polyoxoanion-stabilized nanoparticle formation and stabilization system. That comparison reveals closely analogous, solution Ir(1,5-COD)(+) or Ir(1,5-COD)Cl-mediated, mechanisms of nanoparticle formation. Overall, the hypothesis supported by this work is that these and analogous studies hold promise of providing a way to transfer the synthetic and mechanistic insights, from the modern revolution in nanoparticle synthesis and characterization in solution, to the rational, mechanism-directed syntheses of solid oxide-supported nanoparticle heterogeneous catalysts, also in contact with solution.

17.
J Am Chem Soc ; 132(28): 9701-14, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20575521

RESUMO

An important question and hence goal in catalysis is how best to transfer the synthetic and mechanistic insights gained from the modern revolution in nanoparticle synthesis, characterization, and catalysis to prepare the next generation of improved, supported-nanoparticle heterogeneous catalysts. It is precisely this question and to-date somewhat elusive goal which are addressed by the present work. More specifically, the global hypothesis investigated herein is that the use of speciation-controlled, well-characterized, solid oxide supported-organometallic precatalysts in contact with solution will lead to the next generation of better composition, size- and shape-controlled, as well as highly active and reproducible, supported-nanoparticle heterogeneous catalysts-ones that can also be understood kinetically and mechanistically. Developed herein are eight criteria defining a prototype system for supported-nanoparticle heterogeneous catalyst formation in contact with solution. The initial prototype system explored is the precatalyst, Ir(1,5-COD)Cl/gamma-Al(2)O(3) (characterized via ICP, CO adsorption, IR, and XAFS spectroscopies), and the well-defined product, Ir(0)(n)/gamma-Al(2)O(3) (characterized by reaction stoichiometry, TEM, and XAFS). The Ir(0)(n)/gamma-Al(2)O(3) system proved to be a highly active and long-lived catalyst in the simple test reaction of cyclohexene hydrogenation and in comparison to two literature Ir(0)(n)/Al(2)O(3) heterogeneous catalysts examined under identical conditions. High activity (2.2-4.8-fold higher than that of the literature Ir(0)(n)/Al(2)O(3) catalysts tested under the same conditions) and good lifetime (> or = 220,000 total turnovers of cyclohexene hydrogenation) are observed, in part by design since only acetone solvent, cyclohexene, and H(2) are possible ligands in the resultant "weakly ligated/labile-ligand" supported nanoclusters. Significantly, the Ir(1,5-COD)Cl/gamma-Al(2)O(3) + H(2) --> Ir(0)(n)/gamma-Al(2)O(3) heterogeneous catalyst formation kinetics were also successfully monitored using the cyclohexene hydrogenation reporter reaction method previously developed and applied to solution-nanoparticle formation. The observed sigmoidal supported-nanoparticle heterogeneous catalyst formation kinetics, starting from the Ir(1,5-COD)Cl/gamma-Al(2)O(3) precatalyst, are closely fit by the two-step mechanism of slow continuous nucleation (A --> B, rate constant k(1) = 1.5(1.1) x 10(-3) h(-1)) followed by fast autocatalytic surface growth (A + B --> 2B, rate constant k(2) = 1.6(2) x 10(4) h(-1) M(-1)), where A is the Ir(1,5-COD)Cl/gamma-Al(2)O(3) precatalyst and B is the resultant Ir(0)(n)/gamma-Al(2)O(3) catalyst. The kinetics are significant in establishing the ability to monitor the formation of supported-nanoparticle heterogeneous catalysts in contact with solution. They also suggest that the nine synthetic and mechanistic insights from the two-step mechanism of nanoparticle formation in solution should now apply also to the formation of supported-nanoparticle heterogeneous catalysts in contact with solution. The results open the door for new syntheses of supported-nanoparticle heterogeneous catalysts under nontraditional, mild, and flexible conditions where supported organometallics and other precursors are in contact with solution, so that additional variables such as the solvent choice, added ligands, solution temperature, and so on can be used to control the catalyst formation steps and, ideally, the resultant supported-nanoparticle heterogeneous catalyst composition, size, and shape.

19.
J Am Chem Soc ; 131(18): 6389-96, 2009 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-19379011

RESUMO

A pressing problem in supported-metal-nanoparticle heterogeneous catalysis--despite the long history and considerable fundamental as well as industrial importance of such heterogeneous catalysts--is how to monitor such catalysts' formation more routinely, rapidly, and in real time. Such information is needed to better control the size, shape, composition, and thus resultant catalytic activity, selectivity, and lifetime of these important catalysts. To this end, a study is reported of the formation of supported Pt(0)(n) nanoparticles by H(2) reduction of H(2)PtCl(6) on Al(2)O(3) (or TiO(2)) to give 6 equivalents of HCl plus supported Pt(0)(n)/Al(2)O(3) (or Pt(0)(n)/TiO(2)), all while in contact with a solution of EtOH and cyclohexene. The HCl and Pt(0)(n) products were confirmed, respectively, by the stoichiometry of HCl formation using pH(apparent) measurements, appropriate standards, and by TEM and EDX measurements. The hypothesis of this research is that the kinetics of formation of this supported heterogeneous catalyst could be successfully monitored by a fast cyclohexene hydrogenation catalytic reporter reaction method first worked out for monitoring transition-metal nanoparticle formation in solution (Watzky, M. A. and Finke, R. G. J. Am. Chem. Soc. 1997, 119, 10382-10400). Significantly, sigmoidal kinetics of Pt(0)(n)/Al(2)O(3) catalyst formation were in fact successfully monitored by the catalytic hydrogenation reporter reaction method and then found to be well fit to the Finke-Watzky (hereafter F-W) 2-step, slow continuous nucleation and then autocatalytic surface growth mechanism, A --> B (rate constant k(1)) and A + B --> 2B (rate constant k(2)), respectively, in which A is the H(2)PtCl(6) and B is the growing, catalytically active Pt(0) nanoparticle surface. The finding that the F-W mechanism is applicable is significant in that it, in turn, suggests that the > or = 8 insights from studies of the mechanisms of soluble nanocluster formation can likely also be applied to supported heterogeneous catalyst synthesis, including a recent equation that gives nanocluster size vs time in terms of k(1), k(2), [A](o) and other parameters (Watzky, M. A., Finney, E. E. and Finke, R. G. J. Am. Chem. Soc. 2008, 130, 11959-11969 ). Also presented are the use of the catalytic reporter reaction to reveal H(2) gas to-solution mass-transfer-limitations (MTL) in the system of H(2)PtCl(6) on TiO(2), results relevant to a recent communication in this journal. The use of the F-W 2-step nucleation and autocatalytic growth kinetic model to fit 3 literature examples of heterogeneous catalyst formation, involving H(2) reduction of both supported or bulk M(x)O(y) (i.e., and in gas-solid reactions), are also presented as part of the Supporting Information. A conclusion section is then provided summarizing the insights and caveats from the present work, as well as some needed future studies.

20.
ACS Omega ; 3(11): 14538-14550, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31458138

RESUMO

It is of considerable interest to prepare weakly ligated, labile ligand (WLLL) nanoparticles for applications in areas such as chemical catalysis. WLLL nanoparticles can be defined as nanoparticles with sufficient, albeit minimal, surface ligands of moderate binding strength to meta-stabilize nanoparticles, initial stabilizer ligands that can be readily replaced by other, desired, more strongly coordinating ligands and removed completely when desired. Herein, we describe WLLL nanoparticles prepared from [Ir(1,5-COD)Cl]2 reduction under H2, in acetone. The results suggest that H+Cl--stabilized Ir(0) n nanoparticles, herein Ir(0) n ·(H+Cl-) a , serve as a WLLL nanoparticle for the preparation of, as illustrative examples, five specific nanoparticle products: Ir(0) n ·(Cl-Bu3NH+) a , Ir(0) n ·(Cl-Dodec3NH+) a , Ir(0) n ·(POct3)0.2n (Cl-H+) b , Ir(0) n ·(POct3)0.2n , and the γ-Al2O3-supported heterogeneous catalyst, Ir(0) n ·(γ-Al2O3) a (Cl-H+) b . (where a and b vary for the differently ligated nanoparticles; in addition, solvent can be present as a nanoparticle surface ligand). With added POct3 as a key, prototype example, an important feature is that a minimum, desired, experimentally determinable amount of ligand (e.g., just 0.2 equiv POct3 per mole of Ir) can be added, which is shown to provide sufficient stabilization that the resultant Ir(0) n ·(POct3)0.2n (Cl-H+) b is isolable. Additionally, the initial labile ligand stabilizer HCl can be removed to yield Ir(0) n ·(POct3)0.2n that is >99% free of Cl- by a AgCl precipitation test. The results provide strong support for the weakly ligated, labile ligand nanoparticle concept and specific support for Ir(0) n ·(H+Cl-) a as a WLLL nanoparticle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA