Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Biol Chem ; 295(28): 9725-9735, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32482891

RESUMO

Aortic carboxypeptidase-like protein (ACLP) is a collagen-binding extracellular matrix protein that has important roles in wound healing and fibrosis. ACLP contains thrombospondin repeats, a collagen-binding discoidin domain, and a catalytically inactive metallocarboxypeptidase domain. Recently, mutations in the ACLP-encoding gene, AE-binding protein 1 (AEBP1), have been discovered, leading to the identification of a new variant of Ehlers-Danlos syndrome causing connective tissue disruptions in multiple organs. Currently, little is known about the mechanisms of ACLP secretion or the role of post-translational modifications in these processes. We show here that the secreted form of ACLP contains N-linked glycosylation and that inhibition of glycosylation results in its intracellular retention. Using site-directed mutagenesis, we determined that glycosylation of Asn-471 and Asn-1030 is necessary for ACLP secretion and identified a specific N-terminal proteolytic ACLP fragment. To determine the contribution of secreted ACLP to extracellular matrix mechanical properties, we generated and mechanically tested wet-spun collagen ACLP composite fibers, finding that ACLP enhances the modulus (or stiffness), toughness, and tensile strength of the fibers. Some AEBP1 mutations were null alleles, whereas others resulted in expressed proteins. We tested the hypothesis that a recently discovered 40-amino acid mutation and insertion in the ACLP discoidin domain regulates collagen binding and assembly. Interestingly, we found that this protein variant is retained intracellularly and induces endoplasmic reticulum stress identified with an XBP1-based endoplasmic reticulum stress reporter. Our findings highlight the importance of N-linked glycosylation of ACLP for its secretion and contribute to our understanding of ACLP-dependent disease pathologies.


Assuntos
Carboxipeptidases/metabolismo , Síndrome de Ehlers-Danlos/metabolismo , Matriz Extracelular/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Repressoras/metabolismo , Substituição de Aminoácidos , Animais , Carboxipeptidases/genética , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/patologia , Matriz Extracelular/genética , Matriz Extracelular/patologia , Glicosilação , Camundongos , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Proteínas Repressoras/genética
2.
Am J Hum Genet ; 102(4): 696-705, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29606302

RESUMO

AEBP1 encodes the aortic carboxypeptidase-like protein (ACLP) that associates with collagens in the extracellular matrix (ECM) and has several roles in development, tissue repair, and fibrosis. ACLP is expressed in bone, the vasculature, and dermal tissues and is involved in fibroblast proliferation and mesenchymal stem cell differentiation into collagen-producing cells. Aebp1-/- mice have abnormal, delayed wound repair correlating with defects in fibroblast proliferation. In this study, we describe four individuals from three unrelated families that presented with a unique constellation of clinical findings including joint laxity, redundant and hyperextensible skin, poor wound healing with abnormal scarring, osteoporosis, and other features reminiscent of Ehlers-Danlos syndrome (EDS). Analysis of skin biopsies revealed decreased dermal collagen with abnormal collagen fibrils that were ragged in appearance. Exome sequencing revealed compound heterozygous variants in AEBP1 (c.1470delC [p.Asn490_Met495delins(40)] and c.1743C>A [p.Cys581∗]) in the first individual, a homozygous variant (c.1320_1326del [p.Arg440Serfs∗3]) in the second individual, and a homozygous splice site variant (c.1630+1G>A) in two siblings from the third family. We show that ACLP enhances collagen polymerization and binds to several fibrillar collagens via its discoidin domain. These studies support the conclusion that bi-allelic pathogenic variants in AEBP1 are the cause of this autosomal-recessive EDS subtype.


Assuntos
Alelos , Carboxipeptidases/genética , Colágeno/metabolismo , Tecido Conjuntivo/patologia , Síndrome de Ehlers-Danlos/genética , Mutação/genética , Proteínas Repressoras/genética , Adulto , Sequência de Aminoácidos , Carboxipeptidases/química , Criança , Pré-Escolar , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Masculino , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/química , Pele/patologia , Pele/ultraestrutura , Adulto Jovem
3.
PLoS Genet ; 13(4): e1006740, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28410364

RESUMO

Arf4 is proposed to be a critical regulator of membrane protein trafficking in early secretory pathway. More recently, Arf4 was also implicated in regulating ciliary trafficking, however, this has not been comprehensively tested in vivo. To directly address Arf4's role in ciliary transport, we deleted Arf4 specifically in either rod photoreceptor cells, kidney, or globally during the early postnatal period. Arf4 deletion in photoreceptors did not cause protein mislocalization or retinal degeneration, as expected if Arf4 played a role in protein transport to the ciliary outer segment. Likewise, Arf4 deletion in kidney did not cause cystic disease, as expected if Arf4 were involved in general ciliary trafficking. In contrast, global Arf4 deletion in the early postnatal period resulted in growth restriction, severe pancreatic degeneration and early death. These findings are consistent with Arf4 playing a critical role in endomembrane trafficking, particularly in the pancreas, but not in ciliary function.


Assuntos
Fatores de Ribosilação do ADP/genética , Doenças Renais Císticas/genética , Pâncreas Exócrino/patologia , Degeneração Retiniana/genética , Animais , Cílios/genética , Cílios/patologia , Modelos Animais de Doenças , Humanos , Rim/metabolismo , Rim/patologia , Doenças Renais Císticas/patologia , Camundongos , Camundongos Knockout , Motivos de Nucleotídeos/genética , Pâncreas Exócrino/crescimento & desenvolvimento , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patologia , Degeneração Retiniana/patologia , Deleção de Sequência
4.
Dev Neurobiol ; 78(3): 311-330, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28986965

RESUMO

The biogenesis of lysosome-related organelles complex-1 (BLOC-1) and the bloc-one-related complex (BORC) are the cytosolic protein complexes required for specialized membrane protein traffic along the endocytic route and the spatial distribution of endosome-derived compartments, respectively. BLOC-1 and BORC complex subunits and components of their interactomes have been associated with the risk and/or pathomechanisms of neurodevelopmental disorders. Thus, cellular processes requiring BLOC-1 and BORC interactomes have the potential to offer novel insight into mechanisms underlying behavioral defects. We focus on interactions between BLOC-1 or BORC subunits with the actin and microtubule cytoskeleton, membrane tethers, and SNAREs. These interactions highlight requirements for BLOC-1 and BORC in membrane movement by motors, control of actin polymerization, and targeting of membrane proteins to specialized cellular domains such as the nerve terminal and the primary cilium. We propose that the endosome-primary cilia pathway is an underappreciated hub in the genesis and mechanisms of neurodevelopmental disorders. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 311-330, 2018.


Assuntos
Cílios/metabolismo , Endossomos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo , Animais , Humanos
5.
J Cell Biol ; 216(7): 2131-2150, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28576874

RESUMO

Primary cilia perceive the extracellular environment through receptors localized in the ciliary membrane, but mechanisms directing specific proteins to this domain are poorly understood. To address this question, we knocked down proteins potentially important for ciliary membrane targeting and determined how this affects the ciliary trafficking of fibrocystin, polycystin-2, and smoothened. Our analysis showed that fibrocystin and polycystin-2 are dependent on IFT20, GMAP210, and the exocyst complex, while smoothened delivery is largely independent of these components. In addition, we found that polycystin-2, but not smoothened or fibrocystin, requires the biogenesis of lysosome-related organelles complex-1 (BLOC-1) for ciliary delivery. Consistent with the role of BLOC-1 in sorting from the endosome, we find that disrupting the recycling endosome reduces ciliary polycystin-2 and causes its accumulation in the recycling endosome. This is the first demonstration of a role for BLOC-1 in ciliary assembly and highlights the complexity of pathways taken to the cilium.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Endossomos/metabolismo , Lectinas/metabolismo , Canais de Cátion TRPP/metabolismo , Animais , Proteínas de Transporte/genética , Cílios/metabolismo , Proteínas do Citoesqueleto , Disbindina , Proteínas Associadas à Distrofina/genética , Proteínas Associadas à Distrofina/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Lectinas/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transporte Proteico , Interferência de RNA , Ratos , Receptores de Superfície Celular/metabolismo , Receptor Smoothened/metabolismo , Fatores de Tempo , Transfecção , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA