Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(3): 2007-2015, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38349647

RESUMO

Chemoselective reactions allow near-precision control over the polymer composition and topology to create sequence-controlled polymers with similar secondary and tertiary structures to those found in proteins. Dendrimers are recognized as well-defined macromolecules with the potential to mimic protein surface functionality due to the large number of functional groups available at its periphery with the internal structure acting as the support scaffold. Transitioning from using small-molecule dendrimers to dendritic macromolecules will not only allow retention of the high peripheral functionality but also provide an internal scaffold with a desired polymer composition within each generational layer. Here, we exemplify a systematic approach to creating a dendritic macromolecule with the placement of different polymer building blocks in precise locations within the internal structure and the placement of three different amino acid moieties clustered at the periphery. The synthesis of this ABC dendritic macromolecule was accomplished through iterative chemoselective reactions.


Assuntos
Dendrímeros , Dendrímeros/química , Aminoácidos/química , Polímeros/química , Proteínas
2.
Molecules ; 28(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903494

RESUMO

Porcine circovirus 2 (PCV2) infection is one of the most serious threats to the swine industry. While the disease can be prevented, to some extent, by commercial PCV2a vaccines, the evolving nature of PCV2 necessitates the development of a novel vaccine that can compete with the mutations of the virus. Thus, we have developed novel multiepitope vaccines based on the PCV2b variant. Three PCV2b capsid protein epitopes, together with a universal T helper epitope, were synthesized and formulated with five delivery systems/adjuvants: complete Freund's adjuvant, poly(methyl acrylate) (PMA), poly(hydrophobic amino acid), liposomes and rod-shaped polymeric nanoparticles built from polystyrene-poly(N-isopropylacrylamide)-poly(N-dimethylacrylamide). Mice were subcutaneously immunized with the vaccine candidates three times at three-week intervals. All vaccinated mice produced high antibody titters after three immunizations as analyzed by the enzyme-linked immunosorbent assay (ELISA), while mice vaccinated with PMA-adjuvanted vaccine elicited high antibody titers even after a single immunization. Thus, the multiepitope PCV2 vaccine candidates designed and examined here show strong potential for further development.


Assuntos
Circovirus , Doenças dos Suínos , Vacinas Virais , Suínos , Animais , Camundongos , Anticorpos Antivirais , Doenças dos Suínos/prevenção & controle , Peptídeos , Epitopos , Adjuvantes Imunológicos
3.
Biomacromolecules ; 23(1): 174-181, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34898168

RESUMO

We rationally designed a monomer that when polymerized formed a well-defined nonionic polymer [poly(2-(methacryloyloxy) ethylureido glycinamide), PMEGA] by reversible addition fragmentation chain transfer with a flat and tunable upper critical solution temperature (UCST) in water. The monomer was made in one pot from commercially available compounds and with ease of purification. Strong hydrogen-bonding side groups on the polymer produced sharp coil-to-globule transitions upon cooling below its UCST. Ideal random copolymers produced with butyl methacrylate also showed flat UCST profiles, in which the UCST increased with a greater butyl methacrylate copolymer composition from 7 to 65 °C. In the presence of NaCl, the UCST decreased linearly with NaCl concentration due to the "salting-in" effect, and it was found that the slopes from the linear decrease of UCST were nearly identical for all copolymer compositions. This new polymer and its copolymers support the hypothesis that strong hydrogen bonding between the side groups allowed the flat UCST to be readily tuned with a high level of predictability. We postulate that this polymer system may provide wide biological applicability similar to that found for the well-used flat lower critical solution temperature (LCST) of poly(N-isopropylacrylamide).


Assuntos
Polímeros , Água , Micelas , Polimerização , Temperatura
4.
Biomacromolecules ; 23(9): 3960-3967, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35994316

RESUMO

Continued SARS-CoV-2 transmission among the human population has meant the evolution of the virus to produce variants of increased infectiousness and virulence, coined variants of concern (VOCs). The last wave of pandemic infections was driven predominantly by the delta VOC, but because of continued transmission and adaptive mutations, the more highly transmissible omicron variant emerged and is now dominant. However, due to waning immunity and emergence of new variants, vaccines alone cannot control the pandemic. The application of an antiviral coating to high-touch surfaces and physical barriers such as masks are an effective means to inactivate the virus and their spread. Here, we demonstrate an environmentally friendly water-borne polymer coating that can completely inactivate SARS-CoV-2 independent of the infectious variant. The polymer was designed to target the highly glycosylated spike protein on the virion surface and inactivate the virion by disruption of the viral membrane through a nano-mechanical process. Our findings show that, even with low amounts of coating on the surface (1 g/m2), inactivation of alpha, delta, and omicron VOCs and degradation of their viral genome were complete. Furthermore, our data shows that the polymer induces little to no skin sensitization in mice and is non-toxic upon oral ingestion in rats. We anticipate that our transparent polymer coating can be applied to face masks and many other surfaces to capture and inactivate the virus, aiding in the reduction of SARS-CoV-2 transmission and evolution of new variants of concern.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/prevenção & controle , Humanos , Camundongos , Polímeros , Ratos , SARS-CoV-2/genética , Vírion
5.
Angew Chem Int Ed Engl ; 61(11): e202113974, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35043533

RESUMO

Anisotropic Janus ("snowman") nanoparticles with a single protrusion are currently made via the solvent swelling-induced method. Here, we demonstrate without the aid of toxic solvents a generally applicable method for the formation of anisotropic polymer nanoparticles directly in water by controlling polymer mobility through tuning its glass transition temperature (Tg ). Spherical structures, formed immediately after the emulsion polymerization, transformed into uniform tadpoles (with head diameter ≈60 nm and tail length ≈130 nm) through the protrusion of a single cylindrical tail when cooled to a temperature above the Tg of the polymer. Cooling the spheres to below the Tg produced kinetically trapped kettlebell structures that could be freeze-dried and rehydrated without any structural change. These unique kettlebells could transform into uniform tadpoles by heating above the Tg , representing a triggered and on-demand structural reorganization.

6.
Clin Exp Pharmacol Physiol ; 48(9): 1185-1202, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34046925

RESUMO

Cancer stem cells (CSCs) are a small population of heterogeneous tumor cells with the capacity of self-renewal and aberrant differentiation for immortality and divergent lineages of cancer cells. In contrast to bulky tumor cells, CSCs remain less differentiated and resistant to therapy even when targeted with tissue-specific antigenic markers. This makes CSCs responsible for not only tumor initiation, development, but also tumor recurrence. Emerging evidence suggests that CSCs can undergo cell senescence, a non-proliferative state of cells in response to stress. While cell senescence attenuates tumor cell proliferation, it is commonly regarded as a tumor suppressive mechanism. However, mounting research indicates that CSC senescence also provides these cells with the capacity to evade cytotoxic effects from cancer therapy, exacerbating cancer relapse and metastasis. Recent studies demonstrate that senescence drives reprogramming of cancer cell toward stemness and promotes CSC generation. In this review, we highlight the origin, heterogeneity and senescence regulatory mechanisms of CSCs, the complex relationship between CSC senescence and tumor therapy, and the recent beneficial effects of senotherapy on eliminating senescent tumor cells.


Assuntos
Células-Tronco Neoplásicas
7.
J Am Chem Soc ; 142(36): 15265-15270, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32815364

RESUMO

Biological macromolecules such as proteins and nucleic acids are monodisperse just as low-molar-mass organic compounds are. However, synthetic macromolecules contain mixtures of different chain lengths, the most uniform being generated by living polymerizations, which exhibit a maximum of 1-3% of chains with the desired length. Monodisperse natural and synthetic oligomers can be obtained in low quantities by tedious, multistep iterative methods. Here we report a methodology to synthesize monodisperse synthetic macromolecules by self-interrupted living polymerization. This methodology relies on a concept that combines supramolecular and macromolecular chemistry and differs from the conventional reactivity principles employed in the synthesis of polymers for over 100 years.

8.
Biomacromolecules ; 21(11): 4377-4378, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33161722

RESUMO

This special issue of Biomacromolecules highlights research from The International Polymer Colloid Group (IPCG), which was founded in 1972 as a forum for the exchange of ideas and emerging research activities for scientists and engineers from both academia and industry who study or use polymer colloids. The increasing relevance of polymeric structures with colloidal dimensions to biomacromolecules research provided the impetus for organizing this special issue. The IPCG is composed of over 120 researchers from over 20 countries who are elected to membership. Activities comprise annual symposia including a biennial International Polymer Colloid Group Research Conference and a semiannual newsletter that incorporates a summary of recent (including unpublished) research results from our members.


Assuntos
Coloides , Polímeros
9.
Biomacromolecules ; 21(1): 133-142, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31475533

RESUMO

Polymer nanostructures can be designed with tailored properties and functions by varying their shape, chemical compositions, and surface functionality. The poor stability of these soft materials in solvent other than water can be overcome by introducing cross-links. However, cross-linking complex morphologies remains a challenge. Here, by using the temperature-directed morphology transformation method, we show that the symmetric (nanoworm) and asymmetric (tadpole) nanostructure cores can be UV-cross-linked through the coupling of styrene and para-chlorostyrene units found in the core by irradiating at 254 nm for up to 5 h. Once cross-linked, these nanostructures maintain their structure in organic solvent, further allowing us to couple on a water-insoluble pro-fluorescent probe with high efficiency.


Assuntos
Nanoestruturas/química , Polímeros/química , Resinas Acrílicas/química , Cromatografia em Gel , Química Click , Difusão Dinâmica da Luz , Corantes Fluorescentes/química , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão , Polimerização , Solventes/química , Estirenos/química , Propriedades de Superfície , Temperatura , Raios Ultravioleta
10.
Biomacromolecules ; 21(11): 4457-4468, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32212644

RESUMO

Targeted delivery of therapeutic drugs using nanoparticles to the highly aggressive triple negative breast cancer cells has the potential to reduce side effects and drug resistance. Cell entry into triple negative cells can be enhanced by incorporating cell binding receptor molecules on the surface of the nanoparticles to enhance receptor-mediated entry pathways, including clatherin or caveolae endocytosis. However, for highly aggressive cancer cells, these pathways may not be effective, with the more rapid and high volume uptake from macropinocytosis or phagocytosis being significantly more advantageous. Here we show, in the absence of attached cell binding receptor molecules, that asymmetric polymer tadpole nanostructure coated with a thermoresponsive poly(N-isopropylacrylamide) polymer with approximately 50% of this polymer in a globular conformation resulted in both high selectivity and rapid uptake into the triple breast cancer cell line MDA-MB-231. We found that the poly(N-isopropylacrylamide) surface coating in combination with the tadpole's unique shape had an almost 15-fold increase in cell uptake compared to spherical particles with the same polymer coating, and that the mode of entry was most likely through phagocytosis. Delivery of the tadpole attached with doxorubicin (a prodrug, which can be released at pHs < 6) showed a remarkable 10-fold decrease in the IC50 compared to free doxorubicin. It was further observed that cell death was primarily through late apoptosis, which may allow further protection from the body's own immune system. Our results demonstrate that by tuning the chemical composition, polymer conformation and using an asymmetric-shaped nanoparticle, both selectivity and effective delivery and release of therapeutics can be achieved, and such insights will allow the design of nanoparticles for optimal cancer outcomes.


Assuntos
Nanopartículas , Nanoestruturas , Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Humanos , Larva , Polímeros , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
11.
Biomacromolecules ; 21(5): 1700-1708, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-31914312

RESUMO

Conventional self-assembly methods of block copolymers in cosolvents (i.e., usually water and organic solvents) has yet to produce a pure and monodisperse population of nanocubes. The requirement to assemble a nanocube is for the second block to have a high molecular weight. However, such high molecular weight block copolymers usually result in the formation of kinetically trapped nanostructures even with the addition of organic cosolvents. Here, we demonstrate the rapid production of well-defined polymer nanocubes directly in water by utilizing the thermoresponsive nature of the second block (with 263 monomer units), in which the block copolymer was fully water-soluble below its lower critical solution temperature (LCST) and would produce a pure population of nanocubes when heated above this temperature. Incorporating a pH-responsive monomer in the second block allowed us to control the size of the nanocubes in water with pH and the LCST of the block copolymer. We then used the temperature and pH responsiveness to create an adaptive system that changes morphology when using a unique fuel. This fuel (H2O2 + MnO2) is highly exothermic, and the solution pH increases with the consumption of H2O2. Initially, a nonequilibrium spherical nanostructure formed, which transformed over time into nanocubes, and by controlling the exotherm of the reaction, we controlled the time for this transformation. This block copolymer and the water-only method of self-assembly have provided some insights into designing biomimetic systems that can readily adapt to the environmental conditions.


Assuntos
Micelas , Polímeros , Peróxido de Hidrogênio , Compostos de Manganês , Óxidos , Temperatura , Água
12.
Biomacromolecules ; 21(1): 250-261, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31566368

RESUMO

The mixed-ligand system consisting of tris(2-aminoethyl)amine (TREN) and tris(2-dimethylaminoethyl)amine (Me6-TREN) during the Cu(0) wire-catalyzed single electron transfer-living radical polymerization (SET-LRP) of methyl acrylate (MA) in "programmed" biphasic mixtures of the dipolar aprotic solvents NMP, DMF, and DMAc with H2O is reported. Kinetic and chain end analysis studies by NMR and MALDI-TOF before and after thio-bromo "click" reaction demonstrated that Me6-TREN complements and makes the less expensive TREN a very efficient ligand in the absence of externally added Cu(II)Br2. Statistical analysis of the kinetic data together with control experiments demonstrated that this mixed-ligand effect enhanced the apparent rate constant of propagation, monomer conversion, and molecular weight control. The most efficient effect was observed at a 1/1 molar ratio between these two ligands, suggesting that in addition to a fast exchange between the two ligands, a new single dynamic ligand generated by hydrogen bonding may be responsible for the mixed ligand observed.


Assuntos
Cobre/química , Etilenodiaminas/química , Polimerização , Catálise , Cinética , Ligantes , Espectroscopia de Ressonância Magnética , Polimetil Metacrilato/química , Solventes/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Água/química
13.
Clin Exp Pharmacol Physiol ; 47(5): 838-847, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31883392

RESUMO

The ability of cancer cells to form clusters is a characteristic feature in the development of metastatic tumours with drug resistance. Several studies demonstrated that clusters of circulating tumour cells (CTCs) have a greater metastatic potential to establish new tumours at secondary sites than single CTCs. However, the mechanism of cluster formation is not well understood. In this study, we investigated whether cancer stemness would contribute to cluster formation. We used a tumour sphere culture method to enrich cancer stem cells (CSCs) from colon cancer cells and found that during the second generation of sphere culture, clusters (between 3 and 5 cells) formed within the first 24 hours, whereas the rest remained as single cells. The clusters were analysed for stemness and metastatic potential, including gene expressions for cancer stemness (CD133 and Lgr5), epithelial-mesenchymal transition (E-cadherin and TGF-ß 1-3) and hypoxia-induced factors (HIF-1α and HIF-2α). The results showed that the clusters expressed higher levels of these genes and colon CSC surface markers (including CD24, CD44 and CD133) than the single cells. Among these markers, CD24 seemed the major contributor linking the cells into the clusters. These clusters also showed a stronger ability to both form colonies and migrate. Our data collectively suggest that colon cancer stemness contributes to cluster formation and that clustered cells exhibit a great metastatic potential. Our study thus provides a method to study the CTC clusters and derive insight into oncogenesis and metastasis.


Assuntos
Biomarcadores Tumorais/metabolismo , Movimento Celular , Proliferação de Células , Neoplasias do Colo/metabolismo , Células-Tronco Neoplásicas/metabolismo , Biomarcadores Tumorais/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Regulação da Expressão Gênica , Células HCT116 , Células HT29 , Humanos , Metástase Neoplásica , Células-Tronco Neoplásicas/patologia , Fenótipo , Esferoides Celulares
14.
Biomacromolecules ; 20(2): 625-634, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30157649

RESUMO

Targeting the spleen with nanoparticles could increase the efficacy of vaccines and cancer immunotherapy, and have the potential to treat intracellular infections including leishmaniasis, trypanosome, splenic TB, AIDS, malaria, and hematological disorders. Although, nanoparticle capture in both the liver and spleen has been well documented, there are only a few examples of specific capture in the spleen alone. It is proposed that the larger the nanoparticle size (>400 nm) the greater the specificity and capture within the spleen. Here, we synthesized five nanostructures with different shapes (ranging from spheres, worms, rods, nanorattles, and toroids) and poly( N-isopropylacrylamide), PNIPAM, surface coating using the temperature-directed morphology transformation (TDMT) method. Globular PNIPAM (i.e., water insoluble) surface coatings have been shown to significantly increase cell uptake and enhanced enzyme activity. We incorporated a globular component of PNIPAM on the nanostructure surface and examined the in vivo biodistribution of these nanostructures and accumulation in various tissues and organs in a mouse model. The in vivo biodistribution as a function of time was influenced by the shape and PNIPAM surface composition, in which organ capture and retention was the highest in the spleen. The rods (∼150 nm in length and 15 nm in width) showed the highest capture and retention of greater than 35% to the initial injection amount compared to all other nanostructures. It was found that the rods specifically targeted the cells in the red pulp region of the spleen due to the shape and PNIPAM coating of the rod. This remarkable accumulation and selectively into the spleen represents new nanoparticle design parameters to develop new splenotropic effects for vaccines and other therapeutics.


Assuntos
Resinas Acrílicas/química , Nanopartículas/química , Animais , Feminino , Temperatura Alta , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/metabolismo , Nanopartículas/ultraestrutura , Células RAW 264.7 , Baço/metabolismo , Polímeros Responsivos a Estímulos/química , Distribuição Tecidual
15.
Biomacromolecules ; 19(12): 4703-4709, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30428671

RESUMO

Polymer nanostructures can be designed with specific properties and functions, such as controlled shape, size, chemical composition, and adaptive ability to change shape or size in response to environmental cues. Precise control to organize polymer chains into uniform nonspherical symmetric and asymmetric nanostructures and at scale remains a synthetic challenge. Here, by using the temperature-directed morphology transformation (TDMT) method we show through a systematic organization of polymer chains the synthesis of well-defined asymmetric (i.e., tadpole) and symmetric (i.e., worm) nanostructures in water at high polymer concentrations. This method further allowed the production of tadpoles with controlled and uniform tail lengths, ranging from 200 to 800 nm. The organization of chains could be driven by environmental conditions to produce adaptive nanostructure systems.


Assuntos
Nanoestruturas/química , Polímeros/química , Água/química , Polímeros/síntese química , Temperatura
16.
Biomacromolecules ; 19(2): 616-625, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29283562

RESUMO

Cyclic polymers with internal constraints provide new insight into polymer properties in solution and bulk and can serve as a model system to explain the stability and mobility of cyclic biomacromolecules. The model system used in this work consisted of cyclic polystyrene structures, all with a nearly identical molecular weight, designed with 0-3 constraints located at strategic sites within the cyclic polymer, with either 4 or 6 branch points. The total number of branch points (or arms) within the cyclic ranged from 0 to 18. Molecular dynamic (MD) simulations showed that as the number of arms increased within the cyclic structure, the radius of gyration and the hydrodynamic radius generally decreased, suggesting the greater number of constraints resulted in a more compact polymer chain. The simulations further showed that the excluded volume was much greater for the cyclics compared to a linear polymer at the same molecular weight. The spirocyclic, a structure consisting of three rings joined in series, showed significant excluded volume effects in agreement with experimental data; the reason for which is unclear at this stage. Interestingly, under a size exclusion chromatography flow, the radius of hydration for all the cyclic structures increased compared with the DLS data, and could be explained from the greater swelling of the rings perpendicular to the flow found from previous simulations on rings. This data suggests that the greater compactness, greater excluded volume and structural rearrangements under flow of constrained cyclic polymers could be used to provide a physical basis for understanding greater stability and activity of cyclic biological macromolecules.


Assuntos
Simulação de Dinâmica Molecular , Polímeros/química , Estrutura Molecular
17.
Phys Chem Chem Phys ; 20(4): 2606-2614, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29319074

RESUMO

The oxidation potential of a test set of 21 nitroxide radicals, including a number of novel compounds, has been studied experimentally in acetonitrile and correlated with theoretical calculations. It was found that both Hammett constants (σp) of the substituents on the nitroxide radicals and hyperfine splitting constants of the respective nitrogen atoms (αN) were well correlated to their experimental oxidation potentials. Theoretical calculations, carried out at the G3(MP2,CC)(+)//M06-2X/6-31+G(d,p) level of theory with PCM solvation corrections, were shown to reproduce experiments to within a mean absolute deviation of 33 mV, with a maximum deviation of 64 mV. The oxidation potentials of the nitroxides examined varied over 400 mV, depending on ring size and substitution. This considerable variation can be rationalised by the ability of various substituents to electrostatically stabilize the oxidised oxoammonium cation. Importantly, this can be quantified by a simple predictive relationship involving the distance scaled dipole and quadrupole moments of the analogous cyclohexyl ring. This highlights the often-overlooked role of through-space electrostatic substituent effects, even in formally neutral compounds.

18.
Angew Chem Int Ed Engl ; 56(29): 8459-8463, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28471042

RESUMO

There is a strong desire to design and synthesize catalysts that assemble at the oil-water interface to improve the efficiency of biphasic reactions. Anisotropic dumbbell-shaped bi-component mesoporous carbon-organosilica Janus particles with asymmetric wettability are synthesized through a one-step compartmentalized growth of a mesoporous organosilica sphere attached to a mesoporous resorcinol-formaldehyde (RF) sphere. A library was prepared of tunable Janus particles possessing diverse hollow structures with various functionalities. As a proof of concept, the Janus particle-derived catalyst can assemble at the oil-water interface to stabilize Pickering emulsions. Owing to the increased reaction interface area, the Janus catalyst exhibits a more than three-fold increase in catalytic efficiency compared to the Pt loaded carbon sphere catalyst in aqueous hydrogenation reactions.

19.
J Am Chem Soc ; 138(51): 16600-16603, 2016 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-27973784

RESUMO

A general strategy through the use of direct azidation of alcohols allowed the sequence control of macromers via both the iterative sequential growth and iterative exponential growth methods. The chemistry was highly efficient in building polymers from a sequence of compositionally different macromers tethered together in close proximity. Using the DPPA/DBU method for near quantitative azidation of the benzyl alcohol moiety, sequence controlled polymers were made via a direct and one-step procedure for CuAAC activation. With four different macromers, spherical miktoarm star-like polymers of 50 000 molecular weight were prepared with a low dispersity, and the polymer coil size depended on the type of added macromer. Polymers made via the iterative methods opens the way for the design of advanced materials with predictable properties.

20.
Bioorg Med Chem ; 24(18): 4372-4380, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27475535

RESUMO

Immunotherapy is one of the most promising strategies for the treatment of cancer. Human papillomavirus (HPV) is responsible for virtually all cases of cervical cancer. The main purpose of a therapeutic HPV vaccine is to stimulate CD8(+) cytotoxic T lymphocytes (CTLs) that can eradicate HPV infected cells. HPV oncoproteins E6 and E7 are continuously expressed and are essential for maintaining the growth of HPV-associated tumor cells. We designed polymer-based multi-antigenic formulations/constructs that were comprised of the E6 and E7 peptide epitopes. We developed an N-terminus-based epitope conjugation to conjugate two unprotected peptides to poly tert-butyl acrylate. This method allowed for the incorporation of the two antigens into a polymeric dendrimer in a strictly equimolar ratio. The most effective formulations eliminated tumors in up to 50% of treated mice. Tumor recurrence was not observed up to 3months post initial challenge.


Assuntos
Antígenos/química , Vacinas contra Papillomavirus/uso terapêutico , Peptídeos/química , Polímeros/química , Neoplasias do Colo do Útero/prevenção & controle , Sequência de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão , Epitopos/química , Epitopos/imunologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Vacinas contra Papillomavirus/química , Vacinas contra Papillomavirus/imunologia , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA