Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 145(4): 596-606, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21565616

RESUMO

Under fasting conditions, metazoans maintain energy balance by shifting from glucose to fat burning. In the fasted state, SIRT1 promotes catabolic gene expression by deacetylating the forkhead factor FOXO in response to stress and nutrient deprivation. The mechanisms by which hormonal signals regulate FOXO deacetylation remain unclear, however. We identified a hormone-dependent module, consisting of the Ser/Thr kinase SIK3 and the class IIa deacetylase HDAC4, which regulates FOXO activity in Drosophila. During feeding, HDAC4 is phosphorylated and sequestered in the cytoplasm by SIK3, whose activity is upregulated in response to insulin. SIK3 is inactivated during fasting, leading to the dephosphorylation and nuclear translocation of HDAC4 and to FOXO deacetylation. SIK3 mutant flies are starvation sensitive, reflecting FOXO-dependent increases in lipolysis that deplete triglyceride stores; reducing HDAC4 expression restored lipid accumulation. Our results reveal a hormone-regulated pathway that functions in parallel with the nutrient-sensing SIRT1 pathway to maintain energy balance.


Assuntos
Drosophila melanogaster/metabolismo , Metabolismo Energético , Insulina/metabolismo , Transdução de Sinais , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ingestão de Alimentos , Fatores de Transcrição Forkhead/metabolismo , Histona Desacetilases/metabolismo , Lipase/metabolismo , Metabolismo dos Lipídeos , Camundongos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Triglicerídeos/metabolismo
2.
Cell ; 145(4): 607-21, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21565617

RESUMO

Class IIa histone deacetylases (HDACs) are signal-dependent modulators of transcription with established roles in muscle differentiation and neuronal survival. We show here that in liver, class IIa HDACs (HDAC4, 5, and 7) are phosphorylated and excluded from the nucleus by AMPK family kinases. In response to the fasting hormone glucagon, class IIa HDACs are rapidly dephosphorylated and translocated to the nucleus where they associate with the promoters of gluconeogenic enzymes such as G6Pase. In turn, HDAC4/5 recruit HDAC3, which results in the acute transcriptional induction of these genes via deacetylation and activation of FOXO family transcription factors. Loss of class IIa HDACs in murine liver results in inhibition of FOXO target genes and lowers blood glucose, resulting in increased glycogen storage. Finally, suppression of class IIa HDACs in mouse models of type 2 diabetes ameliorates hyperglycemia, suggesting that inhibitors of class I/II HDACs may be potential therapeutics for metabolic syndrome.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Glucose/metabolismo , Histona Desacetilases/metabolismo , Proteínas Quinases Ativadas por AMP , Acetilação , Animais , Núcleo Celular/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteína Forkhead Box O1 , Glucagon/metabolismo , Gluconeogênese , Homeostase , Camundongos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
3.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33723074

RESUMO

Fasting in mammals promotes increases in circulating glucagon and decreases in circulating insulin that stimulate catabolic programs and facilitate a transition from glucose to lipid burning. The second messenger cAMP mediates effects of glucagon on fasting metabolism, in part by promoting the phosphorylation of CREB and the dephosphorylation of the cAMP-regulated transcriptional coactivators (CRTCs) in hepatocytes. In Drosophila, fasting also triggers activation of the single Crtc homolog in neurons, via the PKA-mediated phosphorylation and inhibition of salt-inducible kinases. Crtc mutant flies are more sensitive to starvation and oxidative stress, although the underlying mechanism remains unclear. Here we use RNA sequencing to identify Crtc target genes that are up-regulated in response to starvation. We found that Crtc stimulates a subset of fasting-inducible genes that have conserved CREB binding sites. In keeping with its role in the starvation response, Crtc was found to induce the expression of genes that inhibit insulin secretion (Lst) and insulin signaling (Impl2). In parallel, Crtc also promoted the expression of genes involved in one-carbon (1-C) metabolism. Within the 1-C pathway, Crtc stimulated the expression of enzymes that encode modulators of S-adenosyl-methionine metabolism (Gnmt and Sardh) and purine synthesis (ade2 and AdSl) Collectively, our results point to an important role for the CREB/CRTC pathway in promoting energy balance in the context of nutrient stress.


Assuntos
Proteínas de Drosophila/genética , Metabolismo Energético , Jejum/metabolismo , Insulina/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Animais , Carbono/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Regulação Enzimológica da Expressão Gênica , Ligação Proteica , Estresse Fisiológico , Fatores de Transcrição/metabolismo
4.
Nat Rev Mol Cell Biol ; 12(3): 141-51, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21346730

RESUMO

The cyclic AMP-responsive element-binding protein (CREB) is phosphorylated in response to a wide variety of signals, yet target gene transcription is only increased in a subset of cases. Recent studies indicate that CREB functions in concert with a family of latent cytoplasmic co-activators called cAMP-regulated transcriptional co-activators (CRTCs), which are activated through dephosphorylation. A dual requirement for CREB phosphorylation and CRTC dephosphorylation is likely to explain how these activator-co-activator cognates discriminate between different stimuli. Following their activation, CREB and CRTCs mediate the effects of fasting and feeding signals on the expression of metabolic programmes in insulin-sensitive tissues.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Transativadores/metabolismo , Tecido Adiposo/metabolismo , Animais , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Glucagon/metabolismo , Gluconeogênese , Humanos , Hiperglicemia/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Fígado/metabolismo , Longevidade/fisiologia , Modelos Biológicos , Músculo Esquelético/metabolismo , Fosforilação , Transdução de Sinais , Transativadores/química , Transativadores/genética
5.
Proc Natl Acad Sci U S A ; 115(23): E5289-E5297, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784793

RESUMO

In response to cold exposure, placental mammals maintain body temperature by increasing sympathetic nerve activity in brown adipose tissue (BAT). Triggering of ß-adrenergic receptors on brown adipocytes stimulates thermogenesis via induction of the cAMP/PKA pathway. Although cAMP response element-binding protein (CREB) and its coactivators-the cAMP-regulated transcriptional coactivators (CRTCs)-mediate transcriptional effects of cAMP in most tissues, other transcription factors such as ATF2 appear critical for induction of thermogenic genes by cAMP in BAT. Brown adipocytes arise from Myf5-positive mesenchymal cells under the control of PRDM16, a coactivator that concurrently represses differentiation along the skeletal muscle lineage. Here, we show that the CREB coactivator CRTC3 is part of an inhibitory feedback pathway that antagonizes PRDM16-dependent differentiation. Mice with a knockout of CRTC3 in BAT (BKO) have increased cold tolerance and reduced adiposity, whereas mice overexpressing constitutively active CRTC3 in adipose tissue are more cold sensitive and have greater fat mass. CRTC3 reduced sympathetic nerve activity in BAT by up-regulating the expression of miR-206, a microRNA that promotes differentiation along the myogenic lineage and that we show here decreases the expression of VEGFA and neurotrophins critical for BAT innervation and vascularization. Sympathetic nerve activity to BAT was enhanced in BKO mice, leading to increases in catecholamine signaling that stimulated energy expenditure. As reexpression of miR-206 in BAT from BKO mice reversed the salutary effects of CRTC3 depletion on cold tolerance, our studies suggest that small-molecule inhibitors against this coactivator may provide therapeutic benefit to overweight individuals.


Assuntos
Tecido Adiposo Marrom/metabolismo , Termogênese/fisiologia , Fatores de Transcrição/metabolismo , Adipócitos Marrons/metabolismo , Adiposidade/genética , Adiposidade/fisiologia , Animais , Diferenciação Celular/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Metabolismo Energético , Camundongos , Camundongos Knockout , MicroRNAs/genética , Transdução de Sinais , Sistema Nervoso Simpático/metabolismo , Fatores de Transcrição/genética
6.
Proc Natl Acad Sci U S A ; 114(44): 11739-11744, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29078378

RESUMO

Populations of circulating immune cells are maintained in equilibrium through signals that enhance the retention or egress of hematopoietic stem cells (HSCs) from bone marrow (BM). Prostaglandin E2 (PGE2) stimulates HSC renewal and engraftment through, for example, induction of the cAMP pathway. Triggering of PGE2 receptors increases HSC survival in part via the PKA-mediated induction of the cAMP response element-binding protein (CREB) signaling pathway. PKA stimulates cellular gene expression by phosphorylating CREB at Ser133 and by promoting the dephosphorylation of the cAMP- responsive transcriptional coactivators (CRTCs). We show here that disruption of both CRTC2 and CRTC3 causes embryonic lethality, and that a single allele of either CRTC2 or CRTC3 is sufficient for viability. CRTC2 knockout mice that express one CRTC3 allele (CRTC2/3m mice) develop neutrophilia and splenomegaly in adulthood due to the up-regulation of granulocyte-colony stimulating factor (G-CSF); these effects are reversed following administration of neutralizing anti-G-CSF antiserum. Adoptive transfer of CRTC2/3m BM conferred the splenomegaly/neutrophilia phenotype in WT recipients. Targeted disruption of both CRTC2 and CRTC3 in stromal cells with a mesenchymal Prx1-Cre transgene also promoted this phenotype. Depletion of CRTC2/3 was found to decrease the expression of Suppressor of Cytokine Signaling 3 (SOCS3), leading to increases in STAT3 phosphorylation and to the induction of CEBPß, a key regulator of the G-CSF gene. As small molecule inhibition of JAK activity disrupted CEBPß induction and reduced G-CSF expression in CRTC2/3m stromal cells, our results demonstrate how cross-coupling between the CREB/CRTC and JAK/STAT pathways contributes to BM homeostasis.


Assuntos
Medula Óssea/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hematopoese/fisiologia , Fatores de Transcrição/metabolismo , Animais , Transplante de Medula Óssea , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fator Estimulador de Colônias de Granulócitos/metabolismo , Janus Quinases/genética , Janus Quinases/metabolismo , Camundongos , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fatores de Transcrição/genética
7.
Proc Natl Acad Sci U S A ; 113(23): E3307-14, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27208092

RESUMO

The starvation-inducible coactivator cAMP response element binding protein (CREB)-cAMP-regulated transcription coactivator (Crtc) has been shown to promote starvation resistance in Drosophila by up-regulating CREB target gene expression in neurons, although the underlying mechanism is unclear. We found that Crtc and its binding partner CREB enhance energy homeostasis by stimulating the expression of short neuropeptide F (sNPF), an ortholog of mammalian neuropeptide Y, which we show here is a direct target of CREB and Crtc. Neuronal sNPF was found to promote energy homeostasis via gut enterocyte sNPF receptors, which appear to maintain gut epithelial integrity. Loss of Crtc-sNPF signaling disrupted epithelial tight junctions, allowing resident gut flora to promote chronic increases in antimicrobial peptide (AMP) gene expression that compromised energy balance. Growth on germ-free food reduced AMP gene expression and rescued starvation sensitivity in Crtc mutant flies. Overexpression of Crtc or sNPF in neurons of wild-type flies dampens the gut immune response and enhances starvation resistance. Our results reveal a previously unidentified tolerance defense strategy involving a brain-gut pathway that maintains homeostasis through its effects on epithelial integrity.


Assuntos
Drosophila melanogaster/metabolismo , Metabolismo Energético , Neurônios/metabolismo , Animais , Animais Geneticamente Modificados , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/microbiologia , Metabolismo Energético/genética , Enterócitos/metabolismo , Feminino , Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Inflamação/genética , Inflamação/metabolismo , Masculino , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Nature ; 485(7396): 128-32, 2012 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-22495310

RESUMO

In the fasted state, increases in circulating glucagon promote hepatic glucose production through induction of the gluconeogenic program. Triggering of the cyclic AMP pathway increases gluconeogenic gene expression via the de-phosphorylation of the CREB co-activator CRTC2 (ref. 1). Glucagon promotes CRTC2 dephosphorylation in part through the protein kinase A (PKA)-mediated inhibition of the CRTC2 kinase SIK2. A number of Ser/Thr phosphatases seem to be capable of dephosphorylating CRTC2 (refs 2, 3), but the mechanisms by which hormonal cues regulate these enzymes remain unclear. Here we show in mice that glucagon stimulates CRTC2 dephosphorylation in hepatocytes by mobilizing intracellular calcium stores and activating the calcium/calmodulin-dependent Ser/Thr-phosphatase calcineurin (also known as PP3CA). Glucagon increased cytosolic calcium concentration through the PKA-mediated phosphorylation of inositol-1,4,5-trisphosphate receptors (InsP(3)Rs), which associate with CRTC2. After their activation, InsP(3)Rs enhanced gluconeogenic gene expression by promoting the calcineurin-mediated dephosphorylation of CRTC2. During feeding, increases in insulin signalling reduced CRTC2 activity via the AKT-mediated inactivation of InsP(3)Rs. InsP(3)R activity was increased in diabetes, leading to upregulation of the gluconeogenic program. As hepatic downregulation of InsP(3)Rs and calcineurin improved circulating glucose levels in insulin resistance, these results demonstrate how interactions between cAMP and calcium pathways at the level of the InsP(3)R modulate hepatic glucose production under fasting conditions and in diabetes.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus/metabolismo , Jejum/metabolismo , Gluconeogênese , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Fígado/metabolismo , Animais , Calcineurina/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Células Cultivadas , AMP Cíclico/metabolismo , Diabetes Mellitus/sangue , Diabetes Mellitus/genética , Jejum/sangue , Regulação da Expressão Gênica/efeitos dos fármacos , Glucagon/farmacologia , Gluconeogênese/genética , Células HEK293 , Hepatócitos/metabolismo , Humanos , Resistência à Insulina , Fígado/citologia , Camundongos , Fosforilação/efeitos dos fármacos , Transativadores/metabolismo , Fatores de Transcrição
9.
Proc Natl Acad Sci U S A ; 112(51): 15642-7, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26644581

RESUMO

Obesity is thought to promote insulin resistance in part via activation of the innate immune system. Increases in proinflammatory cytokine production by M1 macrophages inhibit insulin signaling in white adipose tissue. In contrast, M2 macrophages have been found to enhance insulin sensitivity in part by reducing adipose tissue inflammation. The paracrine hormone prostaglandin E2 (PGE2) enhances M2 polarization in part through activation of the cAMP pathway, although the underlying mechanism is unclear. Here we show that PGE2 stimulates M2 polarization via the cyclic AMP-responsive element binding (CREB)-mediated induction of Krupple-like factor 4 (KLF4). Targeted disruption of CREB or the cAMP-regulated transcriptional coactivators 2 and 3 (CRTC2/3) in macrophages down-regulated M2 marker gene expression and promoted insulin resistance in the context of high-fat diet feeding. As re-expression of KLF4 rescued M2 marker gene expression in CREB-depleted cells, our results demonstrate the importance of the CREB/CRTC pathway in maintaining insulin sensitivity in white adipose tissue via its effects on the innate immune system.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Dinoprostona/farmacologia , Macrófagos/fisiologia , Transdução de Sinais/fisiologia , Animais , Polaridade Celular , Humanos , Resistência à Insulina , Interleucina-4/farmacologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/fisiologia , Camundongos , Fatores de Transcrição/fisiologia
10.
Proc Natl Acad Sci U S A ; 112(9): 2699-704, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25730876

RESUMO

Increases in circulating glucagon during fasting maintain glucose balance by stimulating hepatic gluconeogenesis. Acute ethanol intoxication promotes fasting hypoglycemia through an increase in hepatic NADH, which inhibits hepatic gluconeogenesis by reducing the conversion of lactate to pyruvate. Here we show that acute ethanol exposure also lowers fasting blood glucose concentrations by inhibiting the CREB-mediated activation of the gluconeogenic program in response to glucagon. Ethanol exposure blocked the recruitment of CREB and its coactivator CRTC2 to gluconeogenic promoters by up-regulating ATF3, a transcriptional repressor that also binds to cAMP-responsive elements and thereby down-regulates gluconeogenic genes. Targeted disruption of ATF3 decreased the effects of ethanol in fasted mice and in cultured hepatocytes. These results illustrate how the induction of transcription factors with overlapping specificity can lead to cross-coupling between stress and hormone-sensitive pathways.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Gluconeogênese/efeitos dos fármacos , Hepatócitos/metabolismo , Fígado/metabolismo , Fator 3 Ativador da Transcrição/genética , Animais , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Jejum/metabolismo , Gluconeogênese/genética , Glucose/genética , Glucose/metabolismo , Camundongos , Camundongos Knockout , NADP/genética , NADP/metabolismo , Elementos de Resposta , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Nature ; 470(7334): 404-8, 2011 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-21331044

RESUMO

Activating AMPK or inactivating calcineurin slows ageing in Caenorhabditis elegans and both have been implicated as therapeutic targets for age-related pathology in mammals. However, the direct targets that mediate their effects on longevity remain unclear. In mammals, CREB-regulated transcriptional coactivators (CRTCs) are a family of cofactors involved in diverse physiological processes including energy homeostasis, cancer and endoplasmic reticulum stress. Here we show that both AMPK and calcineurin modulate longevity exclusively through post-translational modification of CRTC-1, the sole C. elegans CRTC. We demonstrate that CRTC-1 is a direct AMPK target, and interacts with the CREB homologue-1 (CRH-1) transcription factor in vivo. The pro-longevity effects of activating AMPK or deactivating calcineurin decrease CRTC-1 and CRH-1 activity and induce transcriptional responses similar to those of CRH-1 null worms. Downregulation of crtc-1 increases lifespan in a crh-1-dependent manner and directly reducing crh-1 expression increases longevity, substantiating a role for CRTCs and CREB in ageing. Together, these findings indicate a novel role for CRTCs and CREB in determining lifespan downstream of AMPK and calcineurin, and illustrate the molecular mechanisms by which an evolutionarily conserved pathway responds to low energy to increase longevity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Calcineurina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Longevidade/fisiologia , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Animais , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Inibidores de Calcineurina , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/biossíntese , Regulação para Baixo , Metabolismo Energético , Ativação Enzimática , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Longevidade/genética , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Transativadores/química , Transativadores/deficiência , Transativadores/genética , Fatores de Transcrição/biossíntese , Transcrição Gênica
12.
Proc Natl Acad Sci U S A ; 111(48): 17116-21, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25404345

RESUMO

In the fasted state, increases in catecholamine signaling promote adipocyte function via the protein kinase A-mediated phosphorylation of cyclic AMP response element binding protein (CREB). CREB activity is further up-regulated in obesity, despite reductions in catecholamine signaling, where it contributes to the development of insulin resistance. Here we show that obesity promotes the CREB binding protein (CBP)-mediated acetylation of CREB at Lys136 in adipose. Under lean conditions, CREB acetylation was low due to an association with the energy-sensing NAD(+)-dependent deacetylase SirT1; amounts of acetylated CREB were increased in obesity, when SirT1 undergoes proteolytic degradation. Whereas CREB phosphorylation stimulated an association with the KIX domain of CBP, Lys136 acetylation triggered an interaction with the CBP bromodomain (BRD) that augmented recruitment of this coactivator to the promoter. Indeed, coincident Ser133 phosphorylation and Lys136 acetylation of CREB stimulated the formation of a ternary complex with the KIX and BRD domains of CBP by NMR analysis. As disruption of the CREB:BRD complex with a CBP-specific BRD inhibitor blocked effects of CREB acetylation on target gene expression, our results demonstrate how changes in nutrient status modulate cellular gene expression in response to hormonal signals.


Assuntos
Adipócitos/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Obesidade/metabolismo , Transdução de Sinais , Células 3T3-L1 , Acetilação , Animais , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Immunoblotting , Lisina/genética , Lisina/metabolismo , Camundongos , Camundongos Knockout , Camundongos Obesos , Mutação , Obesidade/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Regiões Promotoras Genéticas/genética , Ligação Proteica , Sirtuína 1/genética , Sirtuína 1/metabolismo
13.
J Biol Chem ; 290(43): 25997-6006, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26342077

RESUMO

Under fasting conditions, increases in circulating concentrations of glucagon maintain glucose homeostasis via the induction of hepatic gluconeogenesis. Triggering of the cAMP pathway in hepatocytes stimulates the gluconeogenic program via the PKA-mediated phosphorylation of CREB and dephosphorylation of the cAMP-regulated CREB coactivators CRTC2 and CRTC3. In parallel, decreases in circulating insulin also increase gluconeogenic gene expression via the de-phosphorylation and activation of the forkhead transcription factor FOXO1. Hepatic gluconeogenesis is increased in insulin resistance where it contributes to the attendant hyperglycemia. Whether selective activation of the hepatic CREB/CRTC pathway is sufficient to trigger metabolic changes in other tissues is unclear, however. Modest hepatic expression of a phosphorylation-defective and therefore constitutively active CRTC2S171,275A protein increased gluconeogenic gene expression under fasting as well as feeding conditions. Circulating glucose concentrations were constitutively elevated in CRTC2S171,275A-expressing mice, leading to compensatory increases in circulating insulin concentrations that enhance FOXO1 phosphorylation. Despite accompanying decreases in FOXO1 activity, hepatic gluconeogenic gene expression remained elevated in CRTC2S171,275A mice, demonstrating that chronic increases in CRTC2 activity in the liver are indeed sufficient to promote hepatic insulin resistance and to disrupt glucose homeostasis.


Assuntos
Resistência à Insulina , Fígado/metabolismo , Fatores de Transcrição/metabolismo , Animais , Glicemia/metabolismo , Células Cultivadas , Regulação para Baixo , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Transdução de Sinais
14.
Nature ; 468(7326): 933-9, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-21164481

RESUMO

The adipose-derived hormone leptin maintains energy balance in part through central nervous system-mediated increases in sympathetic outflow that enhance fat burning. Triggering of ß-adrenergic receptors in adipocytes stimulates energy expenditure by cyclic AMP (cAMP)-dependent increases in lipolysis and fatty-acid oxidation. Although the mechanism is unclear, catecholamine signalling is thought to be disrupted in obesity, leading to the development of insulin resistance. Here we show that the cAMP response element binding (CREB) coactivator Crtc3 promotes obesity by attenuating ß-adrenergic receptor signalling in adipose tissue. Crtc3 was activated in response to catecholamine signals, when it reduced adenyl cyclase activity by upregulating the expression of Rgs2, a GTPase-activating protein that also inhibits adenyl cyclase activity. As a common human CRTC3 variant with increased transcriptional activity is associated with adiposity in two distinct Mexican-American cohorts, these results suggest that adipocyte CRTC3 may play a role in the development of obesity in humans.


Assuntos
Catecolaminas/metabolismo , Metabolismo Energético , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Temperatura Corporal , Células Cultivadas , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Gorduras na Dieta/farmacologia , Metabolismo Energético/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Resistência à Insulina , Americanos Mexicanos/genética , Camundongos , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/metabolismo , Fosforilação , Proteínas RGS/biossíntese , Proteínas RGS/genética , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/química , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
15.
Handb Exp Pharmacol ; 233: 29-49, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26721678

RESUMO

3'-5'-Cyclic adenosine monophosphate (cyclic AMP or cAMP) was first described in 1957 as an intracellular second messenger mediating the effects of glucagon and epinephrine on hepatic glycogenolysis (Berthet et al., J Biol Chem 224(1):463-475, 1957). Since this initial characterization, cAMP has been firmly established as a versatile molecular signal involved in both central and peripheral regulation of energy homeostasis and nutrient partitioning. Many of these effects appear to be mediated at the transcriptional level, in part through the activation of the transcription factor CREB and its coactivators. Here we review current understanding of the mechanisms by which the cAMP signaling pathway triggers metabolic programs in insulin-responsive tissues.


Assuntos
AMP Cíclico/fisiologia , Glucose/metabolismo , Metabolismo dos Lipídeos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Humanos , Fígado/metabolismo , Músculo Esquelético/metabolismo , Pâncreas/metabolismo , Transdução de Sinais
16.
Proc Natl Acad Sci U S A ; 110(22): 8870-5, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23671120

RESUMO

Under fasting conditions, increases in circulating glucagon maintain glucose balance by promoting hepatic gluconeogenesis. Triggering of the cAMP pathway stimulates gluconeogenic gene expression through the PKA-mediated phosphorylation of the cAMP response element binding (CREB) protein and via the dephosphorylation of the latent cytoplasmic CREB regulated transcriptional coactivator 2 (CRTC2). CREB and CRTC2 activities are increased in insulin resistance, in which they promote hyperglycemia because of constitutive induction of the gluconeogenic program. The extent to which CREB and CRTC2 are coordinately up-regulated in response to glucagon, however, remains unclear. Here we show that, following its activation, CRTC2 enhances CREB phosphorylation through an association with the protein arginine methyltransferase 5 (PRMT5). In turn, PRMT5 was found to stimulate CREB phosphorylation via increases in histone H3 Arg2 methylation that enhanced chromatin accessibility at gluconeogenic promoters. Because depletion of PRMT5 lowers hepatic glucose production and gluconeogenic gene expression, these results demonstrate how a chromatin-modifying enzyme regulates a metabolic program through epigenetic changes that impact the phosphorylation of a transcription factor in response to hormonal stimuli.


Assuntos
Metabolismo Energético/fisiologia , Epigênese Genética/fisiologia , Jejum/fisiologia , Regulação da Expressão Gênica/fisiologia , Gluconeogênese/fisiologia , Proteína-Arginina N-Metiltransferases/metabolismo , Animais , Glicemia/metabolismo , Imunoprecipitação da Cromatina , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Eletroforese em Gel de Poliacrilamida , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Imunoprecipitação , Luciferases , Espectrometria de Massas , Metilação , Camundongos , Fosforilação , Fatores de Transcrição/metabolismo
17.
Nature ; 460(7254): 534-7, 2009 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-19543265

RESUMO

In fasted mammals, circulating pancreatic glucagon stimulates hepatic gluconeogenesis in part through the CREB regulated transcription coactivator 2 (CRTC2, also referred to as TORC2). Hepatic glucose production is increased in obesity, reflecting chronic increases in endoplasmic reticulum (ER) stress that promote insulin resistance. Whether ER stress also modulates the gluconeogenic program directly, however, is unclear. Here we show that CRTC2 functions as a dual sensor for ER stress and fasting signals. Acute increases in ER stress triggered the dephosphorylation and nuclear entry of CRTC2, which in turn promoted the expression of ER quality control genes through an association with activating transcription factor 6 alpha (ATF6alpha, also known as ATF6)--an integral branch of the unfolded protein response. In addition to mediating CRTC2 recruitment to ER stress inducible promoters, ATF6alpha also reduced hepatic glucose output by disrupting the CREB-CRTC2 interaction and thereby inhibiting CRTC2 occupancy over gluconeogenic genes. Conversely, hepatic glucose output was upregulated when hepatic ATF6alpha protein amounts were reduced, either by RNA interference (RNAi)-mediated knockdown or as a result of persistent stress in obesity. Because ATF6alpha overexpression in the livers of obese mice reversed CRTC2 effects on the gluconeogenic program and lowered hepatic glucose output, our results demonstrate how cross-talk between ER stress and fasting pathways at the level of a transcriptional coactivator contributes to glucose homeostasis.


Assuntos
Retículo Endoplasmático/metabolismo , Jejum/fisiologia , Gluconeogênese/fisiologia , Fígado/metabolismo , Estresse Fisiológico/fisiologia , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Fator 6 Ativador da Transcrição , Animais , Núcleo Celular/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Obesidade/fisiopatologia , Transporte Proteico
18.
Proc Natl Acad Sci U S A ; 109(51): 20865-70, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23213254

RESUMO

Basic leucine zipper (bZip) transcription factors regulate cellular gene expression in response to a variety of extracellular signals and nutrient cues. Although the bZip domain is widely known to play significant roles in DNA binding and dimerization, recent studies point to an additional role for this motif in the recruitment of the transcriptional apparatus. For example, the cAMP response element binding protein (CREB)-regulated transcriptional coactivator (CRTC) family of transcriptional coactivators has been proposed to promote the expression of calcium and cAMP responsive genes, by binding to the CREB bZip in response to extracellular signals. Here we show that the CREB-binding domain (CBD) of CRTC2 folds into a single isolated 28-residue helix that seems to be critical for its interaction with the CREB bZip. The interaction is of micromolar affinity on palindromic and variant half-site cAMP response elements (CREs). The CBD and CREB assemble on the CRE with 2:2:1 stoichiometry, consistent with the presence of one CRTC binding site on each CREB monomer. Indeed, the CBD helix and the solvent-exposed residues in the dimeric CREB bZip coiled-coil form an extended protein-protein interface. Because mutation of relevant bZip residues in this interface disrupts the CRTC interaction without affecting DNA binding, our results illustrate that distinct DNA binding and transactivation functions are encoded within the structural constraints of a canonical bZip domain.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sequência Conservada , Cristalografia por Raios X/métodos , AMP Cíclico/química , Cisteína/química , DNA/química , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Zíper de Leucina , Dados de Sequência Molecular , Mutação , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Ativação Transcricional
19.
J Biol Chem ; 288(6): 3823-30, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23269672

RESUMO

The Src-homology 2 (SH2) domain-containing tyrosine phosphatase Shp2 has been known to regulate various signaling pathways triggered by receptor and cytoplasmic tyrosine kinases. Here we describe a novel function of Shp2 in control of lipid metabolism by mediating degradation of fatty acid synthase (FASN). p38-phosphorylated COP1 accumulates in the cytoplasm and subsequently binds FASN through Shp2 here as an adapter, leading to FASN-Shp2-COP1 complex formation and FASN degradation mediated by ubiquitination pathway. By fasting p38 is activated and stimulates FASN protein degradation in mice. Consistently, the FASN protein levels are dramatically elevated in mouse liver and pancreas in which Shp2/Ptpn11 is selectively deleted. Thus, this study identifies a new activity for Shp2 in lipid metabolism.


Assuntos
Ácido Graxo Sintase Tipo I/metabolismo , Proteínas Nucleares/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células 3T3 , Animais , Ácido Graxo Sintase Tipo I/genética , Células HeLa , Humanos , Metabolismo dos Lipídeos/fisiologia , Fígado/enzimologia , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Pâncreas/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Ubiquitina-Proteína Ligases/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
20.
Nat Med ; 13(5): 597-603, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17468767

RESUMO

During physical exercise, increases in motor neuron activity stimulate the expression of muscle-specific genes through the myocyte enhancer factor 2 (MEF2) family of transcription factors. Elevations in intracellular calcium increase MEF2 activity via the phosphorylation-dependent inactivation of class II histone deacetylases (HDACs). In studies to determine the role of the cAMP responsive element binding protein (CREB) in skeletal muscle, we found that mice expressing a dominant-negative CREB transgene (M-ACREB mice) exhibited a dystrophic phenotype along with reduced MEF2 activity. Class II HDAC phosphorylation was decreased in M-ACREB myofibers due to a reduction in amounts of Snf1lk (encoding salt inducible kinase, SIK1), a CREB target gene that functions as a class II HDAC kinase. Inhibiting class II HDAC activity either by viral expression of Snf1lk or by the administration of a small molecule antagonist improved the dystrophic phenotype in M-ACREB mice, pointing to an important role for the SIK1-HDAC pathway in regulating muscle function.


Assuntos
Sobrevivência Celular/fisiologia , Histona Desacetilases/metabolismo , Células Musculares/citologia , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Animais , Cálcio/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Exercício Físico/fisiologia , Regulação da Expressão Gênica , Histona Desacetilase 2 , Humanos , Fatores de Transcrição MEF2 , Camundongos , Camundongos Transgênicos , Neurônios Motores/fisiologia , Distrofia Muscular Animal/genética , Fatores de Regulação Miogênica/metabolismo , Proteínas Serina-Treonina Quinases/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA