Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nucleic Acids Res ; 52(15): 9028-9048, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39041433

RESUMO

Increasingly many studies reveal how ribosome composition can be tuned to optimally translate the transcriptome of individual cell types. In this study, we investigated the expression pattern, structure within the ribosome and effect on protein synthesis of the ribosomal protein paralog 39L (RPL39L). With a novel mass spectrometric approach we revealed the expression of RPL39L protein beyond mouse germ cells, in human pluripotent cells, cancer cell lines and tissue samples. We generated RPL39L knock-out mouse embryonic stem cell (mESC) lines and demonstrated that RPL39L impacts the dynamics of translation, to support the pluripotency and differentiation, spontaneous and along the germ cell lineage. Most differences in protein abundance between WT and RPL39L KO lines were explained by widespread autophagy. By CryoEM analysis of purified RPL39 and RPL39L-containing ribosomes we found that, unlike RPL39, RPL39L has two distinct conformations in the exposed segment of the nascent peptide exit tunnel, creating a distinct hydrophobic patch that has been predicted to support the efficient co-translational folding of alpha helices. Our study shows that ribosomal protein paralogs provide switchable modular components that can tune translation to the protein production needs of individual cell types.


Assuntos
Biossíntese de Proteínas , Dobramento de Proteína , Proteínas Ribossômicas , Ribossomos , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/química , Animais , Camundongos , Humanos , Ribossomos/metabolismo , Conformação Proteica em alfa-Hélice , Camundongos Knockout , Células-Tronco Embrionárias Murinas/metabolismo , Diferenciação Celular/genética
2.
Traffic ; 20(12): 943-960, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31472037

RESUMO

Presence of cytosolic protein aggregates and membrane damage are two common attributes of neurodegenerative diseases. These aggregates delay degradation of non-translocated protein precursors leading to their persistence and accumulation in the cytosol. Here, we find that cells with intracellular protein aggregates (of cytosolic prion protein or huntingtin) destabilize the endoplasmic reticulum (ER) morphology and dynamics when non-translocated protein load is high. This affects trafficking of proteins out from the ER, relative distribution of the rough and smooth ER and three-way junctions that are essential for the structural integrity of the membrane network. The changes in ER membranes may be due to high aggregation tendency of the ER structural proteins-reticulons, and altered distribution of those associated with the three-way ER junctions-Lunapark. Reticulon4 is seen to be enriched in the aggregate fractions in presence of non-translocated protein precursors. This could be mitigated by improving signal sequence efficiencies of the proteins targeted to the ER. These were observed using PrP variants and the seven-pass transmembrane protein (CRFR1) with different signal sequences that led to diverse translocation efficiencies. This identifies a previously unappreciated consequence of cytosolic aggregates on non-translocated precursor proteins-their persistent presence affects ER morphology and dynamics. This may be one of the ways in which cytosolic aggregates can affect endomembranes during neurodegenerative disease.


Assuntos
Retículo Endoplasmático/metabolismo , Agregados Proteicos , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Proteínas Nogo/metabolismo , Proteínas Priônicas/química , Proteínas Priônicas/metabolismo , Ligação Proteica , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Sinais Direcionadores de Proteínas , Transporte Proteico , Receptores de Hormônio Liberador da Corticotropina/química , Receptores de Hormônio Liberador da Corticotropina/metabolismo
3.
Biochem Cell Biol ; 94(4): 359-69, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27471821

RESUMO

Mahogunin RING Finger 1 (MGRN1) is a ubiquitin E3 ligase known to affect spindle tilt in mitotic cells by regulating α-tubulin ubiquitination and polymerization. In cell culture systems we have found that expressing truncated mutants of MGRN1 leads to various other mitotic anomalies, such as lateral and angular spindle displacements. This seems to be independent of the MGRN1 ligase activity. Our experiments suggest that MGRN1 regulates the balance between the lower molecular weight monomeric Gαi and larger trimeric G-protein complex, along with its abundance in the ternary complex that regulates spindle positioning. The cytosolic isoforms of MGRN1 lead to the enrichment of monomeric Gαi in the cytosol and its subsequent recruitment at the plasma membrane. Excess Gαi at the cell cortex results in an imbalance in the assembly of the ternary complex regulating spindle positioning during mitosis. These observations seem independent of the ligase activity of MGRN1, although we cannot exclude the involvement of an intermediate player that acts as a substrate for MGRN1, and in turn, regulates Gαi.


Assuntos
Ciclo Celular/fisiologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Mitose/fisiologia , Fuso Acromático/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Western Blotting , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Células HeLa , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
4.
ACS Synth Biol ; 11(8): 2672-2684, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35801944

RESUMO

Flux balance analysis (FBA) and ordinary differential equation models have been instrumental in depicting the metabolic functioning of a cell. Nevertheless, they demonstrate a population's average behavior (summation of individuals), thereby portraying homogeneity. However, living organisms such as Escherichia coli contain more biochemical reactions than engaging metabolites, making them an underdetermined and degenerate system. This results in a heterogeneous population with varying metabolic patterns. We have formulated a population systems biology model that predicts this degeneracy by emulating a diverse metabolic makeup with unique biochemical signatures. The model mimics the universally accepted experimental view that a subpopulation of bacteria, even under normal growth conditions, renders a unique biochemical state, leading to the synthesis of metabolites and persister progenitors of antibiotic resistance and biofilms. We validate the platform's predictions by producing commercially important heterologous (isobutanol) and homologous (shikimate) metabolites. The predicted fluxes are tested in vitro resulting in 32- and 42-fold increased product of isobutanol and shikimate, respectively. Moreover, we authenticate the platform by mimicking a bacterial population in the presence of glyphosate, a metabolic pathway inhibitor. Here, we observe a fraction of subsisting persisters despite inhibition, thus affirming the signature of a heterogeneous populace. The platform has multiple uses based on the disposition of the user.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Simulação por Computador , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Redes e Vias Metabólicas , Modelos Biológicos
5.
Autophagy ; 17(7): 1729-1752, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32559118

RESUMO

Turnover of cellular organelles, including endoplasmic reticulum (ER) and mitochondria, is orchestrated by an efficient cellular surveillance system. We have identified a mechanism for dual regulation of ER and mitochondria under stress. It is known that AMFR, an ER E3 ligase and ER-associated degradation (ERAD) regulator, degrades outer mitochondrial membrane (OMM) proteins, MFNs (mitofusins), via the proteasome and triggers mitophagy. We show that destabilized mitochondria are almost devoid of the OMM and generate "mitoplasts". This brings the inner mitochondrial membrane (IMM) in the proximity of the ER. When AMFR levels are high and the mitochondria are stressed, the reticulophagy regulatory protein RETREG1 participates in the formation of the mitophagophore by interacting with OPA1. Interestingly, OPA1 and other IMM proteins exhibit similar RETREG1-dependent autophagosomal degradation as AMFR, unlike most of the OMM proteins. The "mitoplasts" generated are degraded by reticulo-mito-phagy - simultaneously affecting dual organelle turnover.Abbreviations: AMFR/GP78: autocrine motility factor receptor; BAPTA: 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid; BFP: blue fluorescent protein; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; CNBr: cyanogen bromide; ER: endoplasmic reticulum; ERAD: endoplasmic-reticulum-associated protein degradation; FL: fluorescence, GFP: green fluorescent protein; HA: hemagglutinin; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; IMM: inner mitochondrial membrane; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MFN: mitofusin, MGRN1: mahogunin ring finger 1; NA: numerical aperature; OMM: outer mitochondrial membrane; OPA1: OPA1 mitochondrial dynamin like GTPase; PRNP/PrP: prion protein; RER: rough endoplasmic reticulum; RETREG1/FAM134B: reticulophagy regulator 1; RFP: red fluorescent protein; RING: really interesting new gene; ROI: region of interest; RTN: reticulon; SEM: standard error of the mean; SER: smooth endoplasmic reticulum; SIM: structured illumination microscopy; SQSTM1/p62: sequestosome 1; STED: stimulated emission depletion; STOML2: stomatin like 2; TOMM20: translocase of outer mitochondrial membrane 20; UPR: unfolded protein response.


Assuntos
Autofagossomos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Receptores do Fator Autócrino de Motilidade/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Lisossomos/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase em Tempo Real
6.
Biochim Biophys Acta Mol Cell Res ; 1867(9): 118741, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32422153

RESUMO

Tumor susceptibility gene 101 (TSG101), an ESCRT-I protein, is implicated in multiple cellular processes and its functional depletion can lead to blocked lysosomal degradation, cell cycle arrest, demyelination and neurodegeneration. Here, we show that loss of TSG101 results in endoplasmic reticulum (ER) stress and this causes ER membrane remodelling (EMR). This correlates with an expansion of ER, increased vacuolation, altered relative distribution of the rough and smooth ER and disruption of three-way junctions. Blocked lysosomal degradation due to TSG101 depletion leads to ER stress and Ca2+ leakage from ER stores, causing destabilization of actin cytoskeleton. Inhibiting Ca2+ release from the ER by blocking ryanodine receptors (RYRs) with Dantrolene partially rescues the ER stress phenotypes. Hence, in this study we have identified the involvement of TSG101 in modulating ER stress mediated remodelling by engaging the actin cytoskeleton. This is significant because functional depletion of TSG101 effectuates ER-stress, perturbs the structure, mobility and function of the ER, all aspects closely associated with neurodegenerative diseases. SUMMARY STATEMENT: We show that tumor susceptibility gene (TSG) 101 regulates endoplasmic reticulum (ER) stress and its membrane remodelling. Loss of TSG101 perturbs structure, mobility and function of the ER as a consequence of actin destabilization.


Assuntos
Proteínas de Ligação a DNA/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Mutação com Perda de Função/genética , Fatores de Transcrição/genética , Biomarcadores , Cálcio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Estresse do Retículo Endoplasmático , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Humanos , Lisossomos/metabolismo , Transporte Proteico , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA