Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Am Chem Soc ; 146(31): 21729-21741, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39078020

RESUMO

Molecular cavities that mimic natural metalloenzymes have shown the potential to trap elusive reaction intermediates. Here, we demonstrate the formation of a rare yet stable Fe(IV)-superoxo intermediate at room temperature subsequent to dioxygen binding at the Fe(III) site of a (Et4N)2[FeIII(Cl)(bTAML)] complex confined inside the hydrophobic interior of a water-soluble Pd6L412+ nanocage. Using a combination of electron paramagnetic resonance, Mössbauer, Raman/IR vibrational, X-ray absorption, and emission spectroscopies, we demonstrate that the cage-encapsulated complex has a Fe(IV) oxidation state characterized by a stable S = 1/2 spin state and a short Fe-O bond distance of ∼1.70 Å. We find that the O2 reaction in confinement is reversible, while the formed Fe(IV)-superoxo complex readily reacts when presented with substrates having weak C-H bonds, highlighting the lability of the O-O bond. We envision that such optimally trapped high-valent superoxos can show new classes of reactivities catalyzing both oxygen atom transfer and C-H bond activation reactions.

2.
Angew Chem Int Ed Engl ; 63(21): e202401344, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38422378

RESUMO

The development of high-performance photocatalytic systems for CO2 reduction is appealing to address energy and environmental issues, while it is challenging to avoid using toxic metals and organic sacrificial reagents. We here immobilize a family of cobalt phthalocyanine catalysts on Pb-free halide perovskite Cs2AgBiBr6 nanosheets with delicate control on the anchors of the cobalt catalysts. Among them, the molecular hybrid photocatalyst assembled by carboxyl anchors achieves the optimal performance with an electron consumption rate of 300±13 µmol g-1 h-1 for visible-light-driven CO2-to-CO conversion coupled with water oxidation to O2, over 8 times of the unmodified Cs2AgBiBr6 (36±8 µmol g-1 h-1), also far surpassing the documented systems (<150 µmol g-1 h-1). Besides the improved intrinsic activity, electrochemical, computational, ex-/in situ X-ray photoelectron and X-ray absorption spectroscopic results indicate that the electrons photogenerated at the Bi atoms of Cs2AgBiBr6 can be directionally transferred to the cobalt catalyst via the carboxyl anchors which strongly bind to the Bi atoms, substantially facilitating the interfacial electron transfer kinetics and thereby the photocatalysis.

3.
Inorg Chem ; 62(14): 5387-5399, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36972560

RESUMO

The formation of Cu(III) species are often invoked as the key intermediate in Cu-catalyzed organic transformation reactions. In this study, we synthesized Cu(II) (1) and Cu(III) (3) complexes supported by a bisamidate-bisalkoxide ligand consisting of an ortho-phenylenediamine (o-PDA) scaffold and characterized them through an array of spectroscopic techniques, including UV-visible, electron paramagnetic resonance, X-ray crystallography, and 1H nuclear magnetic resonance (NMR) and X-ray absorption spectroscopy. The Cu-N/O bond distances in 3 are ∼0.1 Šreduced compared to 1, implying a significant increase in 3's overall effective nuclear charge. Further, a Cu(III) complex (4) of a bisamidate-bisalkoxide ligand containing a trans-cyclohexane-1,2-diamine moiety exhibits nearly identical Cu-N/O bond distances to that of 3, inferring that the redox-active o-PDA backbone is not oxidized upon one-electron oxidation of the Cu(II) complex (1). In addition, a considerable difference in the 1s → 4p and 1s → 3d transition energy was observed in the X-ray absorption near-edge structure data of 3 vs 1, which is typical for the metal-centered oxidation process. Electrochemical measurements of the Cu(II) complex (1) in acetonitrile exhibited two consecutive redox couples at -0.9 and 0.4 V vs the Fc+/Fc reference electrode. One-electron oxidation reaction of 3 further resulted in the formation of a ligand-oxidized Cu complex (3a), which was characterized in depth. Reactivity studies of species 3 and 3a were explored toward the activation of the C-H/O-H bonds. A bond dissociation free energy (BDFE) value of ∼69 kcal/mol was estimated for the O-H bond of the Cu(II) complex formed upon transfer of hydrogen atom to 3. The study represents a thorough spectroscopic characterization of high-valent Cu complexes and sheds light on the PCET reactivity studies of Cu(III) complexes.

4.
Inorg Chem ; 61(51): 21035-21046, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36517453

RESUMO

Molecular cobalt(III) complexes of bis-amidate-bis-alkoxide ligands, (Me4N)[CoIII(L1)] (1) and (Me4N)[CoIII(L2)] (2), are synthesized and assessed through a range of characterization techniques. Electrocatalytic water oxidation activity of the Co complexes in a 0.1 M phosphate buffer solution revealed a ligand-centered 2e-/1H+ transfer event at 0.99 V followed by catalytic water oxidation (WO) at an onset overpotential of 450 mV. By contrast, 2 reveals a ligand-based oxidation event at 0.9 V and a WO onset overpotential of 430 mV. Constant potential electrolysis study and rinse test experiments confirm the homogeneous nature of the Co complexes during WO. The mechanistic investigation further shows a pH-dependent change in the reaction pathway. On the one hand, below pH 7.5, two consecutive ligand-based oxidation events result in the formation of a CoIII(L2-)(OH) species, which, followed by a proton-coupled electron transfer reaction, generates a CoIV(L2-)(O) species that undergoes water nucleophilic attack to form the O-O bond. On the other hand, at higher pH, two ligand-based oxidation processes merge together and result in the formation of a CoIII(L2-)(OH) complex, which reacts with OH- to yield the O-O bond. The ligand-coordinated reaction intermediates involved in the WO reaction are thoroughly studied through an array of spectroscopic techniques, including UV-vis absorption spectroscopy, electron paramagnetic resonance, and X-ray absorption spectroscopy. A mononuclear CoIII(OH) complex supported by the one-electron oxidized ligand, [CoIII(L3-)(OH)]-, a formal CoIV(OH) complex, has been characterized, and the compound was shown to participate in the hydroxide rebound reaction, which is a functional mimic of Compound II of Cytochrome P450.


Assuntos
Cobalto , Água , Cobalto/química , Modelos Moleculares , Ligantes , Oxirredução , Espectroscopia de Ressonância de Spin Eletrônica
5.
Inorg Chem ; 61(36): 14252-14266, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36041064

RESUMO

Mononuclear nickel(II) and nickel(III) complexes of a bisamidate-bisalkoxide ligand, (NMe4)2[NiII(HMPAB)] (1) and (NMe4)[NiIII(HMPAB)] (2), respectively, have been synthesized and characterized by various spectroscopic techniques including X-ray crystallography. The reaction of redox-inactive metal ions (Mn+ = Ca2+, Mg2+, Zn2+, Y3+, and Sc3+) with 2 resulted in 2-Mn+ adducts, which was assessed by an array of spectroscopic techniques including X-ray absorption spectroscopy (XAS), electron paramagnetic resonance (EPR), and reactivity studies. The X-ray structure of Ca2+ coordinated to Ni(III) complexes, 2-Ca2+T, was determined and exhibited an average Ni-Ca distance of 3.1253 Å, close to the metal ions' covalent radius. XAS analysis of 2-Ca2+ and 2-Y3+ in solution further revealed an additional coordination to Ca and Y in the 2-Mn+ adducts with shortened Ni-M distances of 2.15 and 2.11 Å, respectively, implying direct bonding interactions between Ni and Lewis acids (LAs). Such a short interatomic distance between Ni(III) and M is unprecedented and was not observed before. EPR analysis of 2 and 2-Mn+ species, moreover, displayed rhombic signals with gav > 2.12 for all complexes, supporting the +III oxidation state of Ni. The NiIII/NiII redox potential of 2 and 2-Mn+ species was determined, and a plot of E1/2 of 2-Mn+ versus pKa of [M(H2O)n]m+ exhibited a linear relationship, implying that the NiIII/NiII potential of 2 can be tuned with different redox-inactive metal ions. Reactivity studies of 2 and 2-Mn+ with different 4-X-2,6-ditert-butylphenol (4-X-DTBP) and other phenol derivatives were performed, and based on kinetic studies, we propose the involvement of a proton-coupled electron transfer (PCET) pathway. Analysis of the reaction products after the reaction of 2 with 4-OMe-DTBP showed the formation of a Ni(II) complex (1a) where one of the alkoxide arms of the ligand is protonated. A pKa value of 24.2 was estimated for 1a. The reaction of 2-Mn+ species was examined with 4-OMe-DTBP, and it was observed that the k2 values of 2-Mn+ species increase by increasing the Lewis acidity of redox-inactive metal ions. However, the obtained k2 values for 2-Mn+ species are much lower compared to the k2 value for 2. Such a variation of PCET reactivity between 2 and 2-Mn+ species may be attributed to the interactions between Ni(III) and LAs. Our findings show the significance of the secondary coordination sphere effect on the PCET reactivity of Ni(III) complexes and furnish important insights into the reaction mechanism involving high-valent nickel species, which are frequently invoked as key intermediates in Ni-mediated enzymatic reactions, solar-fuel catalysis, and biomimetic/synthetic transformation reactions.


Assuntos
Níquel , Prótons , Cristalografia por Raios X , Elétrons , Íons , Cinética , Ligantes , Metais/química , Níquel/química , Oxirredução
6.
J Am Chem Soc ; 143(30): 11651-11661, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34293261

RESUMO

A new Ru oligomer of formula {[RuII(bda-κ-N2O2)(4,4'-bpy)]10(4,4'-bpy)}, 10 (bda is [2,2'-bipyridine]-6,6'-dicarboxylate and 4,4'-bpy is 4,4'-bipyridine), was synthesized and thoroughly characterized with spectroscopic, X-ray, and electrochemical techniques. This oligomer exhibits strong affinity for graphitic materials through CH-π interactions and thus easily anchors on multiwalled carbon nanotubes (CNT), generating the molecular hybrid material 10@CNT. The latter acts as a water oxidation catalyst and converts to a new species, 10'(H2O)2@CNT, during the electrochemical oxygen evolution process involving solvation and ligand reorganization facilitated by the interactions of molecular Ru catalyst and the surface. This heterogeneous system has been shown to be a powerful and robust molecular hybrid anode for electrocatalytic water oxidation into molecular oxygen, achieving current densities in the range of 200 mA/cm2 at pH 7 under an applied potential of 1.45 V vs NHE. The remarkable long-term stability of this hybrid material during turnover is rationalized based on the supramolecular interaction of the catalyst with the graphitic surface.

7.
J Am Chem Soc ; 143(50): 21286-21293, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34825564

RESUMO

Atomic-scale reproducibility and tunability endorse magnetic molecules as candidates for spin qubits and spintronics. A major challenge is to implant those molecular spins into circuit geometries that may allow one, two, or a few spins to be addressed in a controlled way. Here, the formation of mechanically bonded, magnetic porphyrin dimeric rings around carbon nanotubes (mMINTs) is presented. The mechanical bond places the porphyrin magnetic cores in close contact with the carbon nanotube without disturbing their structures. A combination of spectroscopic techniques shows that the magnetic geometry of the dimers is preserved upon formation of the macrocycle and the mMINT. Moreover, the metallic core selection determines the spin location in the mMINT. The suitability of mMINTs as qubits is explored by measuring their quantum coherence times (Tm). Formation of the dimeric ring preserves the Tm found in the monomer, which remains in the µs scale for mMINTs. The carbon nanotube is used as vessel to place the molecules in complex circuits. This strategy can be extended to other families of magnetic molecules. The size and composition of the macrocycle can be tailored to modulate magnetic interactions between the cores and to introduce magnetic asymmetries (heterometallic dimers) for more complex molecule-based qubits.

8.
Phys Chem Chem Phys ; 23(5): 3656-3667, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33527942

RESUMO

Time-resolved X-ray (tr-XAS) and optical transient absorption (OTA) spectroscopy in the picosecond time scale coupled with Density Functional theory (DFT) and X-ray absorption near-edge structure (XANES) calculations are applied to study three homoleptic Cu(i) dimeric chromophores with ethyl and longer propyl spacers, denoted as [Cu2(mphenet)2]Cl2 (C1), [Cu2(mphenet)2](ClO4)2 (C2) and [Cu2(mphenpr)2](ClO4)2 (C3) (where mphenet = 1,2-bis(9-methyl-1,10-phenanthrolin-2-yl)ethane and mphenpr = 1,3-bis(9-methyl-1,10-phenanthrolin-2-yl)propane). Tr-XAS analysis after light illumination at ∼ 100 ps illustrate the formation of a flattened triplet excited state in all 3 complexes. Optical transient absorption (OTA) analysis for C1 monitored in water and C2 and C3 measured in acetonitrile reveals distinct excited-state lifetimes of 169 ps, 670 ps and 1600 ps respectively. These differences are associated to changes in the solvent (comparing C1 and C2) and the flexibility of the ligand to adapt after Cu flattening upon excitation (C2 and C3). Our results are important for the improved structural dynamics of these types of Cu-based dimeric compounds, and can guide the integration of these chromophores into more complex solar energy conversion schemes.

9.
J Am Chem Soc ; 142(41): 17434-17446, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32935982

RESUMO

Water oxidation catalysis stands out as one of the most important reactions to design practical devices for artificial photosynthesis. Use of late first-row transition metal (TM) complexes provides an excellent platform for the development of inexpensive catalysts with exquisite control on their electronic and structural features via ligand design. However, the difficult access to their high oxidation states and the general labile character of their metal-ligand bonds pose important challenges. Herein, we explore a copper complex (12-) featuring an extended, π-delocalized, tetra-amidate macrocyclic ligand (TAML) as water oxidation catalyst and compare its activity to analogous systems with lower π-delocalization (22- and 32-). Their characterization evidences a special metal-ligand cooperativity in accommodating the required oxidative equivalents using 12- that is absent in 22- and 32-. This consists of charge delocalization promoted by easy access to different electronic states at a narrow energy range, corresponding to either metal-centered or ligand-centered oxidations, which we identify as an essential factor to stabilize the accumulated oxidative charges. This translates into a significant improvement in the catalytic performance of 12- compared to 22- and 32- and leads to one of the most active and robust molecular complexes for water oxidation at neutral pH with a kobs of 140 s-1 at an overpotential of only 200 mV. In contrast, 22- degrades under oxidative conditions, which we associate to the impossibility of efficiently stabilizing several oxidative equivalents via charge delocalization, resulting in a highly reactive oxidized ligand. Finally, the acyclic structure of 32- prevents its use at neutral pH due to acidic demetalation, highlighting the importance of the macrocyclic stabilization.

10.
Chemistry ; 26(43): 9527-9536, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32162730

RESUMO

A systematic series of four novel homo- and heteroleptic CuI photosensitizers based on tetradentate 1,10-phenanthroline ligands of the type X^N^N^X containing two additional donor moieties in the 2,9-position (X=SMe or OMe) were designed. Their solid-state structures were assessed by X-ray diffraction. Cyclic voltammetry, UV-vis absorption, emission and X-ray absorption spectroscopy were then used to determine their electrochemical, photophysical and structural features in solution. Following, time-resolved X-ray absorption spectroscopy in the picosecond time scale, coupled with time-dependent density functional theory calculations, provided in-depth information on the excited state electron configurations. For the first time, a significant shortening of the Cu-X distance and a change in the coordination mode to a pentacoordinated geometry is shown in the excited states of the two homoleptic complexes. These findings are important with respect to a precise understanding of the excited state structures and a further stabilization of this type of photosensitizers.

11.
Chemistry ; 26(13): 2859-2868, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31743487

RESUMO

Inspired by the sulfur-rich environment found in active hydrogenase enzymes, a Ni-based proton reduction catalyst with pentadentate N2 S3 ligand was synthesised. When coupled with [Ru(bpy)3 ]2+ (bpy=2,2'-bipyridine) as photosensitiser and ascorbate as electron donor in a 1:1 mixture of dimethylacetamide and aqueous ascorbic acid/ascorbate buffer, the catalyst showed improved photocatalytic activity compared with a homologous counterpart bearing a tetradentate N2 S2 ligand. The mechanistic pathway of photoinduced hydrogen evolution was comprehensively analysed through optical transient absorption and time-resolved X-ray absorption spectroscopy, which revealed important electronic and structural changes in the catalytic system during photoirradiation. The NiII catalyst undergoes a photoinduced metal-centred reduction to form a NiI intermediate with distorted square-bipyramidal geometry. Further kinetic analyses revealed differences in charge-separation dynamics between the pentadentate and tetradentate forms.


Assuntos
Complexos de Coordenação/química , Hidrogenase/química , Rênio/química , Enxofre/química , Catálise , Hidrogenase/metabolismo , Ligantes , Prótons , Espectroscopia por Absorção de Raios X
12.
Chemistry ; 26(47): 10801-10810, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32452581

RESUMO

Time-resolved X-ray (Tr-XAS) and optical transient absorption (OTA) spectroscopy on the pico-microsecond timescale coupled with density functional theory calculations are applied to study the light-induced spin crossover processes of a Fe-based macrocyclic complex in solution. Tr-XAS analysis after light illumination shows the formation of a seven-coordinated high-spin quintet metastable state, which relaxes to a six-coordinated high-spin configuration before decaying to the ground state. Kinetic analysis of the macrocyclic complex reveals an unprecedented long-lived decay lifetime of approximately 42.6 µs. Comparative studies with a non-macrocyclic counterpart illustrate a significantly shortened approximately 568-fold decay lifetime of about 75 ns, and highlight the importance of the ligand arrangement in stabilizing the reactivity of the excited state. Lastly, OTA analysis shows the seven-coordinated high-spin state to be formed within approximately 6.2 ps. These findings provide a complete understanding of the spin crossover reaction and relaxation pathways of the macrocyclic complex, and reveal the importance of a flexible coordination environment for their rational design.

13.
Chemistry ; 24(24): 6464-6472, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29470842

RESUMO

We report the light-induced electronic and geometric changes taking place within a heteroleptic CuI photosensitizer, namely [(xant)Cu(Me2 phenPh2 )]PF6 (xant=xantphos, Me2 phenPh2 =bathocuproine), by time-resolved X-ray absorption spectroscopy in the ps-µs time regime. Time-resolved X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analysis enabled the elucidation of the electronic and structural configuration of the copper center in the excited state as well as its decay dynamics in different solvent conditions with and without triethylamine acting as a sacrificial electron donor. A three-fold decrease in the decay lifetime of the excited state is observed in the presence of triethylamine, showing the feasibility of the reductive quenching pathway in the latter case. A prominent pre-edge feature is observed in the XANES spectrum of the excited state upon metal to charge ligand transfer transition, showing an increased hybridization of the 3d states with the ligand p orbitals in the tetrahedron around the Cu center. EXAFS and density functional theory illustrate a significant shortening of the Cu-N and an elongation of the Cu-P bonds together with a decrease in the torsional angle between the xantphos and bathocuproine ligand. This study provides mechanistic time-resolved understanding for the development of improved heteroleptic CuI photosensitizers, which can be used for the light-driven production of hydrogen from water.

14.
J Am Chem Soc ; 139(37): 12907-12910, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28853285

RESUMO

A molecular water oxidation catalyst based on the copper complex of general formula [(Lpy)CuII]2-, 22-, (Lpy is 4-pyrenyl-1,2-phenylenebis(oxamidate) ligand) has been rationally designed and prepared to support a more extended π-conjugation through its structure in contrast with its homologue, the [(L)CuII]2- water oxidation catalyst, 12- (L is o-phenylenebis(oxamidate)). The catalytic performance of both catalysts has been comparatively studied in homogeneous phase and in heterogeneous phase by π-stacking anchorage to graphene-based electrodes. In the homogeneous system, the electronic perturbation provided by the pyrene functionality translates into a 150 mV lower overpotential for 22- with respect to 12- and an impressive increase in the kcat from 6 to 128 s-1. Upon anchorage, π-stacking interactions with the graphene sheets provide further π-delocalization that improves the catalytic performance of both catalysts. In this sense, 22- turned out to be the most active catalyst due to the double influence of both the pyrene and the graphene, displaying an overpotential of 538 mV, a kcat of 540 s-1 and producing more than 5300 TONs.

15.
J Am Chem Soc ; 138(48): 15605-15616, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27802032

RESUMO

The realization of artificial photosynthesis carries the promise of cheap and abundant energy, however, significant advances in the rational design of water oxidation catalysts are required. Detailed information on the structure of the catalyst under reaction conditions and mechanisms of O-O bond formation should be obtained. Here, we used a combination of electron paramagnetic resonance (EPR), stopped flow freeze quench on a millisecond-second time scale, X-ray absorption (XAS), resonance Raman (RR) spectroscopy, and density functional theory (DFT) to follow the dynamics of the Ru-based single site catalyst, [RuII(NPM)(4-pic)2(H2O)]2+ (NPM = 4-t-butyl-2,6-di(1',8'-naphthyrid-2'-yl)pyridine, pic = 4-picoline), under the water oxidation conditions. We report a unique EPR signal with g-tensor, gx = 2.30, gy = 2.18, and gz = 1.83 which allowed us to observe fast dynamics of oxygen atom transfer from the RuIV═O oxo species to the uncoordinated nitrogen of the NPM ligand. In few seconds, the NPM ligand modification results in [RuIII(NPM-NO)(4-pic)2(H2O)]3+ and [RuIII(NPM-NO,NO)(4-pic)2]3+ complexes. A proposed [RuV(NPM)(4-pic)2═O]3+ intermediate was not detected under the tested conditions. We demonstrate that while the proximal base might be beneficial in O-O bond formation via nucleophilic water attack on an oxo species as shown by DFT, the noncoordinating nitrogen is impractical as a base in water oxidation catalysts due to its facile conversion to the N-O group. This study opens new horizons for understanding the real structure of Ru catalysts under water oxidation conditions and points toward the need to further investigate the role of the N-O ligand in promoting water oxidation catalysis.

16.
J Am Chem Soc ; 138(33): 10586-96, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27452370

RESUMO

X-ray transient absorption spectroscopy (X-TAS) has been used to study the light-induced hydrogen evolution reaction catalyzed by a tetradentate macrocyclic cobalt complex with the formula [LCo(III)Cl2](+) (L = macrocyclic ligand), [Ru(bpy)3](2+) photosensitizer, and an equimolar mixture of sodium ascorbate/ascorbic acid electron donor in pure water. X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analysis of a binary mixture of the octahedral Co(III) precatalyst and [Ru(bpy)3](2+) after illumination revealed in situ formation of a Co(II) intermediate with significantly distorted geometry and electron-transfer kinetics of 51 ns. On the other hand, X-TAS experiments of the complete photocatalytic system in the presence of the electron donor showed the formation of a square planar Co(I) intermediate species within a few nanoseconds, followed by its decay in the microsecond time scale. The Co(I) structural assignment is supported by calculations based on density functional theory (DFT). At longer reaction times, we observe the formation of the initial Co(III) species concomitant to the decay of Co(I), thus closing the catalytic cycle. The experimental X-ray absorption spectra of the molecular species formed along the catalytic cycle are modeled using a combination of molecular orbital DFT calculations (DFT-MO) and finite difference method (FDM). These findings allowed us to assign the full mechanistic pathway, followed by the catalyst as well as to determine the rate-limiting step of the process, which consists in the protonation of the Co(I) species. This study provides a complete kinetics scheme for the hydrogen evolution reaction by a cobalt catalyst, revealing unique information for the development of better catalysts for the reductive side of hydrogen fuel cells.

17.
J Am Chem Soc ; 138(47): 15291-15294, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27933924

RESUMO

An end-on superoxido complex with the formula {[CoIII(OH2)(trpy)][CoIII(OO•)(trpy)](µ-bpp)}4+ (34+) (bpp- = bis(2-pyridyl)-3,5-pyrazolate; trpy = 2,2';6':2″-terpyridine) has been characterized by resonance Raman, electron paramagnetic resonance, and X-ray absorption spectroscopies. These results together with online mass spectrometry experiments using 17O and 18O isotopically labeled compounds prove that this compound is a key intermediate of the water oxidation reaction catalyzed by the peroxido-bridged complex {[CoIII(trpy)]2(µ-bpp)(µ-OO)}3+ (13+). DFT calculations agree with and complement the experimental data, offering a complete description of the transition states and intermediates involved in the catalytic cycle.

18.
Proc Natl Acad Sci U S A ; 110(10): 3765-70, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23417296

RESUMO

Water oxidation is the key half reaction in artificial photosynthesis. An absence of detailed mechanistic insight impedes design of new catalysts that are more reactive and more robust. A proposed paradigm leading to enhanced reactivity is the existence of oxyl radical intermediates capable of rapid water activation, but there is a dearth of experimental validation. Here, we show the radicaloid nature of an intermediate reactive toward formation of the O-O bond by assessing the spin density on the oxyl group by Electron Paramagnetic Resonance (EPR). In the study, an (17)O-labeled form of a highly oxidized, short-lived intermediate in the catalytic cycle of the water oxidation catalyst cis,cis-[(2,2-bipyridine)2(H2O)Ru(III)ORu(III)(OH2)(bpy)2](4+) was investigated. It contains Ru centers in oxidation states [4,5], has at least one Ru(V) = O unit, and shows

19.
Angew Chem Int Ed Engl ; 55(49): 15382-15386, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27897422

RESUMO

Molecular ruthenium-based water oxidation catalyst precursors of general formula [Ru(tda)(Li )2 ] (tda2- is [2,2':6',2''-terpyridine]-6,6''-dicarboxylato; L1 =4-(pyren-1-yl)-N-(pyridin-4-ylmethyl)butanamide, 1 b; L2 =4-(pyren-1-yl)pyridine), 1 c), have been prepared and thoroughly characterized. Both complexes contain a pyrene group allowing ready and efficiently anchoring via π interactions on multi-walled carbon nanotubes (MWCNT). These hybrid solid state materials are exceptionally stable molecular water-oxidation anodes capable of carrying out more than a million turnover numbers (TNs) at pH 7 with an Eapp =1.45 V vs. NHE without any sign of degradation. XAS spectroscopy analysis before, during, and after catalysis together with electrochemical techniques allow their unprecedented oxidative ruggedness to be monitored and verified.

20.
J Am Chem Soc ; 136(34): 11938-45, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25130482

RESUMO

Modern chemistry's grand challenge is to significantly improve catalysts for water splitting. Further progress requires detailed spectroscopic and computational characterization of catalytic mechanisms. We analyzed one of the most studied homogeneous single-site Ru catalysts, [Ru(II)(bpy)(tpy)H2O](2+) (where bpy = 2,2'-bipyridine, tpy = 2,2';6',2″-terpyridine). Our results reveal that the [Ru(V)(bpy)(tpy)═O](3+) intermediate, reportedly detected in catalytic mixtures as a rate-limiting intermediate in water activation, is not present as such. Using a combination of electron paramagnetic resonance (EPR) and X-ray absorption spectroscopy, we demonstrate that 95% of the Ru complex in the catalytic steady state is of the form [Ru(IV)(bpy)(tpy)═O](2+). [Ru(V)(bpy)(tpy)═O](3+) was not observed, and according to density functional theory (DFT) analysis, it might be thermodynamically inaccessible at our experimental conditions. A reaction product with unique EPR spectrum was detected in reaction mixtures at about 5% and assigned to Ru(III)-peroxo species with (-OOH or -OO- ligands). We also analyzed the [Ru(II)(bpy)(tpy)Cl](+) catalyst precursor and confirmed that this molecule is not a catalyst and its oxidation past Ru(III) state is impeded by a lack of proton-coupled electron transfer. Ru-Cl exchange with water is required to form active catalysts with the Ru-H2O fragment. [Ru(II)(bpy)(tpy)H2O](2+) is the simplest representative of a larger class of water oxidation catalysts with neutral, nitrogen containing heterocycles. We expect this class of catalysts to work mechanistically in a similar fashion via [Ru(IV)(bpy)(tpy)═O](2+) intermediate unless more electronegative (oxygen containing) ligands are introduced in the Ru coordination sphere, allowing the formation of more oxidized Ru(V) intermediate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA