Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 17(13): e2006797, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33682366

RESUMO

Gold nanorods (AuNRs) have attracted a great deal of attention due to their potential for use in a wide range of biomedical applications. However, their production typically requires the use of the relatively toxic cationic surfactant cetyltrimethylammonium bromide (CTAB) leading to continued demand for protocols to detoxify them for in vivo applications. In this study, a robust and facile protocol for the displacement of CTAB from the surface of AuNRs using phospholipids is presented. After the displacement, CTAB is not detectable by NMR spectroscopy, surface-enhanced Raman spectroscopy, or using pH-dependent ζ-potential measurements. The phospholipid functionalized AuNRs demonstrated superior stability and biocompatibility (IC50  > 200 µg mL-1 ) compared to both CTAB and polyelectrolyte functionalized AuNRs and are well tolerated in vivo. Furthermore, they have high near-infrared (NIR) absorbance and produce large amounts of heat under NIR illumination, hence such particles are well suited for plasmonic medical applications.


Assuntos
Ouro , Nanotubos , Cetrimônio , Fosfolipídeos , Análise Espectral Raman
2.
Small ; 16(46): e2003793, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33103323

RESUMO

The generation of effective and safe nanoagents for biological applications requires their physicochemical characteristics to be tunable, and their cellular interactions to be well characterized. Here, the controlled synthesis is developed for preparing high-aspect ratio gold nanotubes (AuNTs) with tailorable wall thickness, microstructure, composition, and optical characteristics. The modulation of optical properties generates AuNTs with strong near infrared absorption. Surface modification enhances dispersibility of AuNTs in aqueous media and results in low cytotoxicity. The uptake and trafficking of these AuNTs by primary mesothelioma cells demonstrate their accumulation in a perinuclear distribution where they are confined initially in membrane-bound vesicles from which they ultimately escape to the cytosol. This represents the first study of the cellular interactions of high-aspect ratio 1D metal nanomaterials and will facilitate the rational design of plasmonic nanoconstructs as cytosolic nanoagents for potential diagnosis and therapeutic applications.


Assuntos
Mesotelioma , Nanoestruturas , Nanotubos , Citosol , Ouro , Humanos , Mesotelioma/tratamento farmacológico
3.
Nanotechnology ; 29(13): 135601, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29355832

RESUMO

High purity gold nanorods (AuNRs) with tunable morphology have been synthesized through a binary-surfactant seedless method, which enables the formation of monocrystalline AuNRs with diameters between 7 and 35 nm. The protocol has high shape yield and monodispersity, demonstrating good reproducibility and scalability allowing synthesis of batches 0.5 l in volume. Morphological control has been achieved through the adjustment of the molar concentrations of cetyltrimethylammonium bromide and sodium oleate in the growth solution, providing fine tuning of the optical scattering and absorbance properties of the AuNRs across the visible and NIR spectrum. Sodium oleate was found to provide greatest control over the aspect ratio (and hence optical properties) with concentration changes between 10 and 23 mM leading to variation in the aspect ratio between 2.8 and 4.8. Changes in the geometry of the end-caps were also observed as a result of manipulating the two surfactant concentrations.

4.
ACS Appl Nano Mater ; 6(19): 17769-17777, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37854850

RESUMO

Colorectal cancer is the third most common malignancy and the second leading cause of cancer death globally. Multiple studies have linked levels of carcinoembryonic antigen in patient serum to poor disease prognosis. Hence, the ability to detect low levels of carcinoembryonic antigen has applications in earlier disease diagnosis, assessment, and recurrence monitoring. Existing carcinoembryonic antigen detection methods often require multiple reagents, trained operators, or complex procedures. A method alleviating these issues is the lateral flow assay, a paper-based platform that allows the detection and quantification of target analytes in complex mixtures. The tests are rapid, are point-of-care, possess a long shelf life, and can be stored at ambient conditions, making them ideal for use in a range of settings. Although lateral flow assays typically use spherical gold nanoparticles to generate the classic red signal, recent literature has shown that alternate morphologies to spheres can improve the limit of detection. In this work, we report the application of alternative gold nanoparticle morphologies, gold nanotapes (∼35 nm in length) and gold nanopinecones (∼90 nm in diameter), in a lateral flow assay for carcinoembryonic antigen. In a comparative assay, gold nanopinecones exhibited a ∼2× improvement in the limit of detection compared to commercially available spherical gold nanoparticles for the same antibody loading and total gold content, whereas the number of gold nanopinecones in each test was ∼3.2× less. In the fully optimized test, a limit of detection of 14.4 pg/mL was obtained using the gold nanopinecones, representing a 24-fold improvement over the previously reported gold-nanoparticle-based carcinoembryonic antigen lateral flow assay.

5.
ACS Appl Mater Interfaces ; 12(22): 24544-24554, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32312040

RESUMO

Rising concerns over multidrug-resistant bacteria have necessitated an expansion to the current antimicrobial arsenal and forced the development of novel delivery strategies that enhance the efficacy of existing treatments. Antimicrobial peptides (AMPs) are a promising antibiotic alternative that physically disrupts the membrane of bacteria, resulting in rapid bactericidal activity; however, clinical translation of AMPs has been hindered by their susceptibility to protease degradation. Through the co-loading of liposomes encapsulating model AMP, IRIKIRIK-CONH2 (IK8), and gold nanorods (AuNRs) into a poly(ethylene glycol) (PEG) hydrogel, we have demonstrated the ability to protect encapsulated materials from proteolysis and provide the first instance of the triggered AMP release. Laser irradiation at 860 nm, at 2.1 W cm-2, for 10 min led to the photothermal triggered release of IK8, resulting in bactericidal activity against Gram-negative Pseudonomas aeruginosa and Gram-positive Staphylococcus aureus. Furthermore, by increasing the laser intensity to 2.4 W cm-2, we have shown the thermal enhancement of AMP activity. The photothermal triggered release, and enhancement of AMP efficacy, was demonstrated to treat two rounds of fresh S. aureus, indicating that the therapeutic gel has the potential for multiple rounds of treatment. Taken together, this novel therapeutic hydrogel system demonstrates the stimuli-responsive release of AMPs with photothermal enhanced antimicrobial efficacy to treat pathogenic bacteria.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Portadores de Fármacos/química , Hidrogéis/química , Lipossomos/química , Nanopartículas Metálicas/química , Liberação Controlada de Fármacos/efeitos da radiação , Ouro/química , Ouro/efeitos da radiação , Raios Infravermelhos , Nanopartículas Metálicas/efeitos da radiação , Testes de Sensibilidade Microbiana , Nanotubos/química , Nanotubos/efeitos da radiação , Polietilenoglicóis/química , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos da radiação
6.
Macromol Biosci ; 18(12): e1800207, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30318831

RESUMO

Recently, the combination of metallic nanoparticles (NPs) of Au, Ag, Fe2 O3 , and Fe3 O4 with traditional soft matter drug-delivery systems has emerged as a promising strategy to achieve site-specific and controlled release of antimicrobial agents. By harnessing the plasmonic and magnetic properties of inorganic NPs, the disruption of antibiotic-loaded liposomes, polymersomes, and hydrogels can be remotely triggered by mechanisms such as photo- and magneto-thermal effects, microbubble cavitation, magnetic positioning, and pH-changes, hence offering significant advantages in improving antibacterial efficacy, reducing side effects, and in overcoming antimicrobial resistance. This review highlights the latest development of stimuli-responsive antibiotic delivery systems incorporating inorganic NPs. The methods employed for preparation of hybrid inorganic NP-associated drug-delivery systems and the effects this has upon the system are discussed. Finally, a detailed exposition of the NP-mediated triggering mechanisms is provided and pertinent examples of their use in antimicrobial applications are presented.


Assuntos
Antibacterianos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Hidrogéis/química , Lipossomos/química , Nanopartículas Metálicas/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Lipossomos/metabolismo , Terapia com Luz de Baixa Intensidade , Campos Magnéticos , Imãs , Nanopartículas Metálicas/ultraestrutura , Microbolhas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA