Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta Biomembr ; 1860(3): 645-653, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29198943

RESUMO

The human apical sodium-dependent bile acid transporter, hASBT/SLC10A2, plays a central role in cholesterol homeostasis via the efficient reabsorption of bile acids from the distal ileum. hASBT has been shown to self-associate in higher order complexes, but while the functional role of endogenous cysteines has been reported, their implication in the oligomerization of hASBT remains unresolved. Here, we determined the self-association architecture of hASBT by site-directed mutagenesis combined with biochemical, immunological and functional approaches. We generated a cysteine-less form of hASBT by creating point mutations at all 13 endogenous cysteines in a stepwise manner. Although Cysless hASBT had significantly reduced function correlated with lowered surface expression, it featured an extra glycosylation site that facilitated its differentiation from wt-hASBT on immunoblots. Decreased protein expression was associated with instability and subsequent proteasome-dependent degradation of Cysless hASBT protein. Chemical cross-linking of wild-type and Cysless species revealed that hASBT exists as an active dimer and/or higher order oligomer with apparently no requirement for endogenous cysteine residues. This was further corroborated by co-immunoprecipitation of differentially tagged (HA-, Flag-) wild-type and Cysless hASBT. Finally, Cysless hASBT exhibited a dominant-negative effect when co-expressed with wild-type hASBT which validated heterodimerization/oligomerization at the functional level. Combined, our data conclusively demonstrate the functional existence of hASBT dimers and higher order oligomers irrespective of cysteine-mediated covalent bonds, thereby providing greater understanding of its topological assembly at the membrane surface.


Assuntos
Cisteína/química , Transportadores de Ânions Orgânicos Dependentes de Sódio/química , Simportadores/química , Sequência de Aminoácidos , Animais , Transporte Biológico , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Cistina/química , Genes Dominantes , Glicosilação , Humanos , Imunoprecipitação , Mutagênese Sítio-Dirigida , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Fragmentos de Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Simportadores/genética , Ácido Taurocólico/metabolismo
2.
Biochemistry ; 52(30): 5117-24, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23815591

RESUMO

The human apical sodium-dependent bile acid transporter (hASBT, SLC10A2), primarily expressed in the ileum, is involved in both the recycling of bile acids and cholesterol homeostasis. In this study, the structure-function relationship of transmembrane domain 5 (TM5) residues involved in transport is elucidated. Cysteine scanning mutagenesis of each consecutive residue on TM5 resulted in 96% of mutants having a significantly decreased transport activity, although each was expressed at the cell surface. Specifically, G197 and I208 were no longer functional, and G201 and G212 functioned at a level of <10% upon cysteine mutation. Interestingly, each of these exists along one face of the helix. Studies suggest that neither G201 nor G212 is on the substrate pathway. Conservative alanine mutations of the four residues displayed a higher activity in all but G197A, indicating its functional importance. G197 and G201 form a GxxxG motif, which has been found to be important in helix-helix interactions. According to our model, G197 and G201 face transmembrane domain 4 (TM4) residues G179 and P175, respectively. Similarly, G212 faces G237, which forms part of a GxxxG domain in transmembrane domain 6 (TM6). It is possible that these GxxxG domains and their interacting partners are responsible for maintaining the structure of the helices and their interactions with one another. I205 and I208 are both in positions to anchor the GxxxG domains and direct the change in interaction of TM5 from TM4 to TM6. Combined, the results suggest that residues along TM5 are critical for ASBT function but are not directly involved in substrate translocation.


Assuntos
Modelos Moleculares , Transportadores de Ânions Orgânicos Dependentes de Sódio/química , Simportadores/química , Alanina/química , Substituição de Aminoácidos , Animais , Sítios de Ligação , Ligação Competitiva , Transporte Biológico , Células COS , Chlorocebus aethiops , Cisteína/química , Humanos , Cinética , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/antagonistas & inibidores , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sódio/metabolismo , Simportadores/antagonistas & inibidores , Simportadores/genética , Simportadores/metabolismo , Ácido Taurocólico/metabolismo
3.
J Am Chem Soc ; 129(37): 11524-34, 2007 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-17715921

RESUMO

The biogenesis of the topaquinone (TPQ) cofactor of copper amine oxidase (CAO) is self-catalyzed and requires copper and molecular oxygen. A dopaquinone intermediate has been proposed to undergo 1,4-addition of a copper-associated water molecule to form the reduced form of TPQ (TPQ(red)), followed by facile oxidation by O(2) to yield the mature TPQ (TPQ(ox)). In this study, we have incorporated a lysine residue in the active site of Arthrobacter globiformis CAO (AGAO) by site-directed mutagenesis to produce D298K-AGAO. The X-ray crystal structure of D298K-AGAO at 1.7-A resolution revealed that a covalent linkage formed between the epsilon-amino side chain of Lys298 and the C2 position of a dopaquinone derived from Tyr382, a precursor to TPQ(ox). We assigned the species as an iminoquinone tautomer (LTI) of lysine tyrosylquinone (LTQ), the organic cofactor of lysyl oxidase (LOX). The time course of the formation of LTI at pH 6.8 was followed by UV/vis and resonance Raman spectroscopies. In the early phase of the reaction, an LTQ-like intermediate was observed. This intermediate then slowly converted to LTI in an isosbestic manner. Not only is the presence of a dopaquinone intermediate in the TPQ biogenesis confirmed, but it also provides strong support for the proposed intermediacy of a dopaquinone in the biogenesis of LTQ in LOX. Further, this study indicates that the dopaquinone intermediate in AGAO is mobile and can swing from the copper site into the active-site wedge to react with Lys298.


Assuntos
Amina Oxidase (contendo Cobre)/metabolismo , Arthrobacter/enzimologia , Benzoquinonas/metabolismo , Di-Hidroxifenilalanina/análogos & derivados , Amina Oxidase (contendo Cobre)/genética , Sítios de Ligação , Cristalografia por Raios X , Di-Hidroxifenilalanina/biossíntese , Di-Hidroxifenilalanina/metabolismo , Escherichia coli/genética , Ligação de Hidrogênio , Lisina/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Espectrofotometria Ultravioleta , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA