Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Behav Brain Res ; 444: 114352, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36842314

RESUMO

Alcohol consumption is associated with alterations in memory and learning processes in humans and animals. In this context, research models such as the zebrafish (Danio rerio) arise as key organisms in behavioral and molecular studies that attempt to clarify alterations in the Central Nervous System (CNS), like those related to alcohol use. Accordingly, we used the zebrafish as a model to evaluate the effects of ethanol on the learning and memory process, as well as its relationship with behavior and transcriptional regulation of lrfn2, lrrk2, grin1a, and bdnf genes in the brain. To this end, for the memory and learning evaluation, we conducted the Novel Object Recognition test (NOR); for behavior, the Novel Tank test; and for gene transcription, qPCR, after 2 h, 24 h, and 8 days of ethanol exposure. As a result, we noticed in the NOR that after 8 days of ethanol exposure, the control group spent more time exploring the novel object than when compared to 2 h post-exposure, indicating that naturally zebrafish remember familiar objects. In animals in the Treatment group, however, no object recognition behavior was observed, suggesting that alcohol affected the learning and memory processes of the animals and stimulated an anxiolytic effect in them. Regarding transcriptional regulation, 24 h after alcohol exposure, we found hyper-regulation of bdnf and, after 8 days, a hypo-regulation of lrfn2 and lrrk2. To conclude, we demonstrated that ethanol exposure may have influenced learning ability and memory formation in zebrafish, as well as behavior and regulation of gene transcription. These data are relevant for further understanding the application of zebrafish in research associated with ethanol consumption and behavior.


Assuntos
Etanol , Peixe-Zebra , Animais , Humanos , Etanol/farmacologia , Peixe-Zebra/fisiologia , Fator Neurotrófico Derivado do Encéfalo , Aprendizagem , Encéfalo , Comportamento Animal , Glicoproteínas de Membrana , Proteínas do Tecido Nervoso/farmacologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/farmacologia , Proteínas de Peixe-Zebra
2.
Front Biosci (Landmark Ed) ; 28(4): 73, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37114543

RESUMO

BACKGROUND: The motivations for and effects of ethanol consumption vary considerably among individuals, and as such, a significant proportion of the population is prone to substance abuse and its negative consequences in the physical, social, and psychological spheres. In a biological context, the characterization of these phenotypes provides clues for understanding the neurological complexity associated with ethanol abuse behavior. Therefore, the objective of this research was to characterize four ethanol preference phenotypes described in zebrafish: Light, Heavy, Inflexible, and Negative Reinforcement. METHODS: To do this, we evaluated the telomere length, mtDNA copy number using real-time quantitative PCR (qPCR), and the activity of these antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) in the brain, and the interactions between these biomarkers. Changes observed in these parameters were associated with ethanol consumption and alcohol abuse. RESULTS: The Heavy, Inflexible, and Negative Reinforcement phenotypes showed ethanol preference. This was particularly the case with the Inflexible phenotype, which was the group with the greatest ethanol preference. These three phenotypes showed telomere shortening as well as high SOD/CAT and/or GPx activities, while the Heavy phenotype also showed an increase in the mtDNA copy number. However, the Light phenotype, containing individuals without ethanol preference, did not demonstrate any changes in the analyzed parameters even after being exposed to the drug. Additionally, the PCA analysis showed a tendency to cluster the Light and Control groups differently from the other ethanol preference phenotypes. There was also a negative correlation between the results of the relative telomere length and SOD and CAT activity, providing further evidence of the biological relationship between these parameters. CONCLUSIONS: Our results showed differential molecular and biochemistry patterns in individuals with ethanol preference, suggesting that the molecular and biochemical basis of alcohol abuse behavior extends beyond its harmful physiological effects, but rather is correlated with preference phenotypes.


Assuntos
Alcoolismo , Antioxidantes , Animais , Antioxidantes/farmacologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Variações do Número de Cópias de DNA , Catalase/genética , Catalase/metabolismo , Catalase/farmacologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Etanol , Encéfalo/metabolismo , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , Telômero/genética , Telômero/metabolismo , Estresse Oxidativo
3.
J Ethnopharmacol ; 268: 113667, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33301920

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The substantial increase in diabetes cases worldwide has been a major public health problem, and the use of medicinal plants can be considered an interesting alternative to control the disease and its complications. Anacardium humile St. Hill. (Anacardiaceae) is a typical plant from the Brazilian savanna, popularly known for its antidiarrheal, expectorant, antidiabetic and anti-inflammatory properties, however, few studies have fully described its biological properties. This study aimed to investigate in vitro and ex vivo the antioxidant and antiglycation potential of A. humile ethanolic extract, its organic fractions and three isolated molecules (quercetin, catechin and gallic acid), their capacity to inhibit the glycolytic enzyme α-amylase, as well as their cytotoxic effects against RAW264.7 macrophages. MATERIAL AND METHODS: The ethanolic extract of A. humile, its organic fractions and three isolated molecules (catechin, quercetin and gallic acid) were tested for their antioxidant (ORAC, FRAP and DPPH) and antiglycation (BSA/Fructose, BSA/Methylglyoxal, Arginine/Methylglyoxal and Lysine/Methylglyoxal) capacities, and also for its potential to inhibit the enzyme α-amylase. Additionally, bioactive compounds present in the A. humile leaves fractions were elucidated by an HPLC-ESIMS/MS analysis. RESULTS: The analysis showed relevant antioxidant activity of DCM (1264.85 ± 76.90 µM Trolox eq/g ORAC; 216.71 ± 1.04 µM Trolox eq/g FRAP and 3.03 ± 0.08 IC50 µg/mL IC50 DPPH) and EtOAc (1300.11 ± 33.04 ORAC, 236.21 ± 23.86 FRAP and 3.03 ± 0.14 µg/mL IC50 DPPH) fractions and also of the isolated molecules, mainly gallic acid (1291.19 ± 8.41 µM Trolox eq/g ORAC, 1103.52 ± 31.48 µM Trolox eq/g FRAP and 0.78 ± 0.11 µg/mL IC50 DPPH). Concerning the antiglycation activity, all samples inhibited over 88% in the BSA-FRU method. In the BSA-MGO and ARG-MGO methods, the Hex, DCM, EtOAc fractions and the isolated molecule catechin stood out. However, in the LYS-MGO model, only the isolated molecules showed significant results. In α-amylase assay, all fractions, for exception Hex, presented notable inhibition capacity with low IC50 values, especially DCM, EtOAc, ButOH and H2O (IC50 0.56 ± 0.10, 0.84 ± 0.01, 0.74 ± 0.03 and 0.79 ± 0.06 µg/mL, respectively). Tests using hepatic tissue showed a notorious capacity of the DCM, AcOEt and ButOH fractions, as well as of the isolated molecules to inhibit lipid peroxidation and ROS production, and also to preserve thiol groups. Molecules of great antioxidant potential were found in our samples, such as kaempferol, quercetin, catechin, gallic acid and luteolin. CONCLUSION: A. humile extract and its organic fractions showed promising antioxidant and antiglycation potential and a prominent capacity to inhibit the α-amylase enzyme. Hence, this study presents new results and stimulates further research to elucidate the biological properties of A. humile and its capacity to manage DM and its complications.


Assuntos
Anacardium , Antioxidantes/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , alfa-Amilases/antagonistas & inibidores , Animais , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Diabetes Mellitus/metabolismo , Relação Dose-Resposta a Droga , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/uso terapêutico , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/fisiologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , alfa-Amilases/metabolismo
4.
J Agric Food Chem ; 65(22): 4428-4438, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28514152

RESUMO

A polyphenol-enriched fraction from Annona crassiflora fruit peel (Ac-Pef) containing chlorogenic acid, (epi)catechin, procyanidin B2, and caffeoyl-glucoside was investigated against hepatic oxidative and nitrosative stress in streptozotocin-induced diabetic rats. Serum biochemical parameters, hepatic oxidative and nitrosative status, glutathione defense system analysis, and in silico assessment of absorption, distribution, metabolism, excretion, and toxicity (ADMET) of the main compounds of Ac-Pef were carried out. Ac-Pef treatment during 30 days decreased serum alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase activities, as well as hepatic lipid peroxidation, protein carbonylation and nitration, inducible nitric oxide synthase level, and activities and expressions of glutathione peroxidase, superoxide dismutase, and catalase. There were increases in antioxidant capacity, glutathione reductase activity, and reduced glutathione level. ADMET predictions of Ac-Pef compounds showed favorable absorption and distribution, with no hepatotoxicity. A. crassiflora fruit peel showed hepatoprotective properties, indicating a promising natural source of bioactive molecules for prevention and therapy of diabetes complications.


Assuntos
Annona/química , Diabetes Mellitus Experimental/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Polifenóis/administração & dosagem , Substâncias Protetoras/administração & dosagem , Alanina Transaminase/sangue , Animais , Antioxidantes/administração & dosagem , Antioxidantes/química , Aspartato Aminotransferases/sangue , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/metabolismo , Frutas/química , Glutationa Peroxidase/sangue , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Estrutura Molecular , Extratos Vegetais/química , Polifenóis/química , Substâncias Protetoras/química , Ratos
5.
Artigo em Inglês | MEDLINE | ID: mdl-25763088

RESUMO

Diabetes mellitus (DM) is characterized by hyperglycemia and alterations in the metabolism of lipids, carbohydrates, and proteins. Due to its hypoglycemic effect Vochysia rufa is frequently used in Uberlandia, Brazil, to treat DM. Despite its popularity, there is little information about its effect on hepatic tissue. Therefore, we evaluated the histoarchitecture, oxidative stress parameters, and polyploidy of liver tissue from streptozotocin- (STZ-) induced diabetic rats treated with aqueous extract of Vochysia rufa (AEV). Histology was determined by fixing the livers, processing, and staining with HE. Oxidative stress was determined by evaluating CAT, GPx, and SOD activity in liver homogenates and hepatic mitochondria fraction and by measuring GST, GSH levels and lipid peroxidation (MDA). Polyploidy was determined by subjecting isolated hepatocyte nuclei to flow cytometry. In the diabetic group, GST activity and GSH rates decreased whereas liver homogenate analysis showed that GPx, SOD activity and MDA increased. AEV treatment restored all parameters to normal levels. The oxidative stress analysis of hepatic mitochondria fraction showed similar results. Lower polyploid cell populations were found in the diabetic rat livers, even after glibenclamide treatment. Thus, AEV treatment efficiently reduced hepatic oxidative stress caused by STZ-induced diabetes and produced no morphological changes in the histological analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA