Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(35): e2121251119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994670

RESUMO

GCN2 (general control nonderepressible 2) is a serine/threonine-protein kinase that controls messenger RNA translation in response to amino acid availability and ribosome stalling. Here, we show that GCN2 controls erythrocyte clearance and iron recycling during stress. Our data highlight the importance of liver macrophages as the primary cell type mediating these effects. During different stress conditions, such as hemolysis, amino acid deficiency or hypoxia, GCN2 knockout (GCN2-/-) mice displayed resistance to anemia compared with wild-type (GCN2+/+) mice. GCN2-/- liver macrophages exhibited defective erythrophagocytosis and lysosome maturation. Molecular analysis of GCN2-/- cells demonstrated that the ATF4-NRF2 pathway is a critical downstream mediator of GCN2 in regulating red blood cell clearance and iron recycling.


Assuntos
Aminoácidos , Eritrócitos , Ferro , Fígado , Macrófagos , Proteínas Serina-Treonina Quinases , Fator 4 Ativador da Transcrição/metabolismo , Aminoácidos/deficiência , Aminoácidos/metabolismo , Anemia/metabolismo , Animais , Citofagocitose , Eritrócitos/metabolismo , Deleção de Genes , Hemólise , Hipóxia/metabolismo , Ferro/metabolismo , Fígado/citologia , Lisossomos/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Fisiológico
2.
Sensors (Basel) ; 21(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34770681

RESUMO

One of the most important challenges in Wireless Sensor Networks (WSN) is the extension of the sensors lifetime, which are battery-powered devices, through a reduction in energy consumption. Using data prediction to decrease the amount of transmitted data is one of the approaches to solve this problem. This paper provides a comparison of deep learning methods in a dual prediction scheme to reduce transmission. The structures of the models are presented along with their parameters. A comparison of the models is provided using different performance metrics, together with the percent of points transmitted per threshold, and the errors between the final data received by Base Station (BS) and the measured values. The results show that the model with better performance in the dataset was the model with Attention, saving a considerable amount of data in transmission and still maintaining a good representation of the measured data.

3.
FASEB J ; 31(8): 3467-3483, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28442549

RESUMO

Gangliosides (sialylated glycolipids) play an essential role in the CNS by regulating recognition and signaling in neurons. Metabolic blocks in processing and catabolism of gangliosides result in the development of severe neurologic disorders, including gangliosidoses manifesting with neurodegeneration and neuroinflammation. We demonstrate that 2 mammalian enzymes, neuraminidases 3 and 4, play important roles in catabolic processing of brain gangliosides by cleaving terminal sialic acid residues in their glycan chains. In neuraminidase 3 and 4 double-knockout mice, GM3 ganglioside is stored in microglia, vascular pericytes, and neurons, causing micro- and astrogliosis, neuroinflammation, accumulation of lipofuscin bodies, and memory loss, whereas their cortical and hippocampal neurons have lower rate of neuritogenesis in vitro Double-knockout mice also have reduced levels of GM1 ganglioside and myelin in neuronal axons. Furthermore, neuraminidase 3 deficiency drastically increased storage of GM2 in the brain tissues of an asymptomatic mouse model of Tay-Sachs disease, a severe human gangliosidosis, indicating that this enzyme is responsible for the metabolic bypass of ß-hexosaminidase A deficiency. Together, our results provide the first in vivo evidence that neuraminidases 3 and 4 have important roles in CNS function by catabolizing gangliosides and preventing their storage in lipofuscin bodies.-Pan, X., De Britto Pará De Aragão, C., Velasco-Martin, J. P., Priestman, D. A., Wu, H. Y., Takahashi, K., Yamaguchi, K., Sturiale, L., Garozzo, D., Platt, F. M., Lamarche-Vane, N., Morales, C. R., Miyagi, T., Pshezhetsky, A. V. Neuraminidases 3 and 4 regulate neuronal function by catabolizing brain gangliosides.


Assuntos
Encéfalo/metabolismo , Gangliosídeos/metabolismo , Neuraminidase/metabolismo , Neurônios/fisiologia , Animais , Encéfalo/patologia , Células Cultivadas , Embrião de Mamíferos , Regulação Enzimológica da Expressão Gênica , Camundongos , Camundongos Knockout , Atividade Motora/fisiologia , Mucolipidoses/metabolismo , Neuraminidase/genética
4.
Circ Res ; 116(5): 789-96, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25593281

RESUMO

RATIONALE: Noncoding gene variants at the SORT1 locus are strongly associated with low-density lipoprotein cholesterol (LDL-C) levels, as well as with coronary artery disease. SORT1 encodes a protein called sortilin, and hepatic sortilin modulates LDL metabolism by targeting apolipoprotein B-containing lipoproteins to the lysosome. Sortilin is also expressed in macrophages, but its role in macrophage uptake of LDL and in atherosclerosis independent of plasma LDL-C levels is unknown. OBJECTIVE: To determine the effect of macrophage sortilin expression on LDL uptake, foam cell formation, and atherosclerosis. METHODS AND RESULTS: We crossed Sort1(-/-) mice onto a humanized Apobec1(-/-); hAPOB transgenic background and determined that Sort1 deficiency on this background had no effect on plasma LDL-C levels but dramatically reduced atherosclerosis in the aorta and aortic root. To test whether this effect was a result of macrophage sortilin deficiency, we transplanted Sort1(-/-);LDLR(-/-) or Sort1(+/+);LDLR(-/-) bone marrow into Ldlr(-/-) mice and observed a similar reduction in atherosclerosis in mice lacking hematopoetic sortilin without an effect on plasma LDL-C levels. In an effort to determine the mechanism by which hematopoetic sortilin deficiency reduced atherosclerosis, we found no effect of sortilin deficiency on macrophage recruitment or lipopolysaccharide-induced cytokine release in vivo. In contrast, sortilin-deficient macrophages had significantly reduced uptake of native LDL ex vivo and reduced foam cell formation in vivo, whereas sortilin overexpression in macrophages resulted in increased LDL uptake and foam cell formation. CONCLUSIONS: Macrophage sortilin deficiency protects against atherosclerosis by reducing macrophage uptake of LDL. Sortilin-mediated uptake of native LDL into macrophages may be an important mechanism of foam cell formation and contributor to atherosclerosis development.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Doenças da Aorta/etiologia , Aterosclerose/etiologia , Células Espumosas/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Desaminase APOBEC-1 , Proteínas Adaptadoras de Transporte Vesicular/deficiência , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/prevenção & controle , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Células da Medula Óssea/metabolismo , LDL-Colesterol/sangue , Citidina Desaminase/genética , Dieta Ocidental/efeitos adversos , Feminino , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Quimera por Radiação , Receptores de LDL/deficiência , Receptores de LDL/genética , Receptores de LDL/fisiologia
5.
Nature ; 466(7307): 714-9, 2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20686566

RESUMO

Recent genome-wide association studies (GWASs) have identified a locus on chromosome 1p13 strongly associated with both plasma low-density lipoprotein cholesterol (LDL-C) and myocardial infarction (MI) in humans. Here we show through a series of studies in human cohorts and human-derived hepatocytes that a common noncoding polymorphism at the 1p13 locus, rs12740374, creates a C/EBP (CCAAT/enhancer binding protein) transcription factor binding site and alters the hepatic expression of the SORT1 gene. With small interfering RNA (siRNA) knockdown and viral overexpression in mouse liver, we demonstrate that Sort1 alters plasma LDL-C and very low-density lipoprotein (VLDL) particle levels by modulating hepatic VLDL secretion. Thus, we provide functional evidence for a novel regulatory pathway for lipoprotein metabolism and suggest that modulation of this pathway may alter risk for MI in humans. We also demonstrate that common noncoding DNA variants identified by GWASs can directly contribute to clinical phenotypes.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , LDL-Colesterol/metabolismo , Cromossomos Humanos Par 1/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Adaptadoras de Transporte Vesicular/biossíntese , Proteínas Adaptadoras de Transporte Vesicular/deficiência , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Sequência de Bases , Sítios de Ligação , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Células Cultivadas , LDL-Colesterol/sangue , Estudos de Coortes , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/genética , Europa (Continente)/etnologia , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Haplótipos/genética , Hepatócitos/metabolismo , Humanos , Lipídeos/sangue , Lipoproteínas VLDL/sangue , Lipoproteínas VLDL/metabolismo , Fígado/citologia , Fígado/metabolismo , Camundongos , Infarto do Miocárdio/sangue , Infarto do Miocárdio/genética , Fenótipo , Transcrição Gênica
6.
Proc Natl Acad Sci U S A ; 107(8): 3817-22, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20133718

RESUMO

Neurotrophin binding to the p75 neurotrophin receptor (p75(NTR)) activates neuronal apoptosis following adult central nervous system injury, but the underlying cellular mechanisms remain poorly defined. In this study, we show that the proform of nerve growth factor (proNGF) induces death of retinal ganglion cells in adult rodents via a p75(NTR)-dependent signaling mechanism. Expression of p75(NTR) in the adult retina is confined to Müller glial cells; therefore we tested the hypothesis that proNGF activates a non-cell-autonomous signaling pathway to induce retinal ganglion cell (RGC) death. Consistent with this, we show that proNGF induced robust expression of tumor necrosis factor alpha (TNFalpha) in Müller cells and that genetic or biochemical ablation of TNFalpha blocked proNGF-induced death of retinal neurons. Mice rendered null for p75(NTR), its coreceptor sortilin, or the adaptor protein NRAGE were defective in proNGF-induced glial TNFalpha production and did not undergo proNGF-induced retinal ganglion cell death. We conclude that proNGF activates a non-cell-autonomous signaling pathway that causes TNFalpha-dependent death of retinal neurons in vivo.


Assuntos
Apoptose , Fator de Crescimento Neural/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Células Ganglionares da Retina/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator de Crescimento Neural/farmacologia , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/efeitos dos fármacos , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética
7.
PLoS Genet ; 6(9): e1001118, 2010 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-20862357

RESUMO

Tay-Sachs disease is a severe lysosomal disorder caused by mutations in the HexA gene coding for the α-subunit of lysosomal ß-hexosaminidase A, which converts G(M2) to G(M3) ganglioside. Hexa(-/-) mice, depleted of ß-hexosaminidase A, remain asymptomatic to 1 year of age, because they catabolise G(M2) ganglioside via a lysosomal sialidase into glycolipid G(A2), which is further processed by ß-hexosaminidase B to lactosyl-ceramide, thereby bypassing the ß-hexosaminidase A defect. Since this bypass is not effective in humans, infantile Tay-Sachs disease is fatal in the first years of life. Previously, we identified a novel ganglioside metabolizing sialidase, Neu4, abundantly expressed in mouse brain neurons. Now we demonstrate that mice with targeted disruption of both Neu4 and Hexa genes (Neu4(-/-);Hexa(-/-)) show epileptic seizures with 40% penetrance correlating with polyspike discharges on the cortical electrodes of the electroencephalogram. Single knockout Hexa(-/-) or Neu4(-/-) siblings do not show such symptoms. Further, double-knockout but not single-knockout mice have multiple degenerating neurons in the cortex and hippocampus and multiple layers of cortical neurons accumulating G(M2) ganglioside. Together, our data suggest that the Neu4 block exacerbates the disease in Hexa(-/-) mice, indicating that Neu4 is a modifier gene in the mouse model of Tay-Sachs disease, reducing the disease severity through the metabolic bypass. However, while disease severity in the double mutant is increased, it is not profound suggesting that Neu4 is not the only sialidase contributing to the metabolic bypass in Hexa(-/-) mice.


Assuntos
Epilepsia/enzimologia , Epilepsia/patologia , Lisossomos/enzimologia , Neuraminidase/deficiência , Neurônios/enzimologia , Neurônios/patologia , Cadeia alfa da beta-Hexosaminidase/metabolismo , Animais , Comportamento Animal , Córtex Cerebral/enzimologia , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Córtex Cerebral/ultraestrutura , Eletroencefalografia , Epilepsia/fisiopatologia , Gangliosídeo G(M2)/metabolismo , Técnicas de Inativação de Genes , Hipocampo/enzimologia , Hipocampo/patologia , Hipocampo/fisiopatologia , Hipocampo/ultraestrutura , Aprendizagem/fisiologia , Lisossomos/patologia , Lisossomos/ultraestrutura , Camundongos , Atividade Motora/fisiologia , Neuraminidase/metabolismo , Neurônios/ultraestrutura
8.
PLoS One ; 18(9): e0292157, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37756356

RESUMO

Heparan sulfate (HS), an abundant component of the apical cell surface and basement membrane, belongs to the glycosaminoglycan family of carbohydrates covalently linked to proteins called heparan sulfate proteoglycans. After endocytosis, HS is degraded in the lysosome by several enzymes, including heparan-alpha-glucosaminide N-acetyltransferase (HGSNAT), and in its absence causes Mucopolysaccharidosis III type C (Sanfilippo type C). Since endocytosis occurs in epithelial cells of the testis and epididymis, we examined the morphological effects of Hgsnat inactivation in these organs. In the testis, Hgsnat knockout (Hgsnat-Geo) mice revealed statistically significant decrease in tubule and epithelial profile area of seminiferous tubules. Electron microscopy (EM) analysis revealed cross-sectional tubule profiles with normal and moderately to severely altered appearances. Abnormalities in Sertoli cells and blood-testis barrier and the absence of germ cells in some tubules were noted along with altered morphology of sperm, sperm motility parameters and a reduction in fertilization rates in vitro. Along with quantitatively increased epithelial and tubular profile areas in the epididymis, EM demonstrated significant accumulations of electrolucent lysosomes in the caput-cauda regions that were reactive for cathepsin D and prosaposin antibodies. Lysosomes with similar storage materials were also found in basal, clear and myoid cells. In the mid/basal region of the epithelium of caput-cauda regions of KO mice, large vacuolated cells, unreactive for cytokeratin 5, a basal cell marker, were identified morphologically as epididymal mononuclear phagocytes (eMPs). The cytoplasm of the eMPs was occupied by a gigantic lysosome suggesting an active role of these cells in removing debris from the epithelium. Some eMPs were found in proximity to T-lymphocytes, a feature of dendritic cells. Taken together, our results reveal that upon Hgsnat inactivation, morphological alterations occur to the testis affecting sperm morphology and motility parameters and abnormal lysosomes in epididymal epithelial cells, indicative of a lysosomal storage disease.

9.
Front Mol Neurosci ; 16: 1323449, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38163061

RESUMO

Introduction: Chronic progressive neuroinflammation is a hallmark of neurological lysosomal storage diseases, including mucopolysaccharidosis III (MPS III or Sanfilippo disease). Since neuroinflammation is linked to white matter tract pathology, we analyzed axonal myelination and white matter density in the mouse model of MPS IIIC HgsnatP304L and post-mortem brain samples of MPS III patients. Methods: Brain and spinal cord tissues of human MPS III patients, 6-month-old HgsnatP304L mice and age- and sex-matching wild type mice were analyzed by immunofluorescence to assess levels of myelin-associated proteins, primary and secondary storage materials, and levels of microgliosis. Corpus callosum (CC) region was studied by transmission electron microscopy to analyze axon myelination and morphology of oligodendrocytes and microglia. Mouse brains were analyzed ex vivo by high-filed MRI using Diffusion Basis Spectrum Imaging in Python-Diffusion tensor imaging algorithms. Results: Analyses of CC and spinal cord tissues by immunohistochemistry revealed substantially reduced levels of myelin-associated proteins including Myelin Basic Protein, Myelin Associated Glycoprotein, and Myelin Oligodendrocyte Glycoprotein. Furthermore, ultrastructural analyses revealed disruption of myelin sheath organization and reduced myelin thickness in the brains of MPS IIIC mice and human MPS IIIC patients compared to healthy controls. Oligodendrocytes (OLs) in the CC of MPS IIIC mice were scarce, while examination of the remaining cells revealed numerous enlarged lysosomes containing heparan sulfate, GM3 ganglioside or "zebra bodies" consistent with accumulation of lipids and myelin fragments. In addition, OLs contained swollen mitochondria with largely dissolved cristae, resembling those previously identified in the dysfunctional neurons of MPS IIIC mice. Ex vivo Diffusion Basis Spectrum Imaging revealed compelling signs of demyelination (26% increase in radial diffusivity) and tissue loss (76% increase in hindered diffusivity) in CC of MPS IIIC mice. Discussion: Our findings demonstrate an important role for white matter injury in the pathophysiology of MPS III. This study also defines specific parameters and brain regions for MRI analysis and suggests that it may become a crucial non-invasive method to evaluate disease progression and therapeutic response.

10.
JCI Insight ; 8(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37698928

RESUMO

Sialidosis is an ultra-rare multisystemic lysosomal disease caused by mutations in the neuraminidase 1 (NEU1) gene. The severe type II form of the disease manifests with a prenatal/infantile or juvenile onset, bone abnormalities, severe neuropathology, and visceromegaly. A subset of these patients present with nephrosialidosis, characterized by abrupt onset of fulminant glomerular nephropathy. We studied the pathophysiological mechanism of the disease in 2 NEU1-deficient mouse models, a constitutive Neu1-knockout, Neu1ΔEx3, and a conditional phagocyte-specific knockout, Neu1Cx3cr1ΔEx3. Mice of both strains exhibited terminal urinary retention and severe kidney damage with elevated urinary albumin levels, loss of nephrons, renal fibrosis, presence of storage vacuoles, and dysmorphic mitochondria in the intraglomerular and tubular cells. Glycoprotein sialylation in glomeruli, proximal distal tubules, and distal tubules was drastically increased, including that of an endocytic reabsorption receptor megalin. The pool of megalin bearing O-linked glycans with terminal galactose residues, essential for protein targeting and activity, was reduced to below detection levels. Megalin levels were severely reduced, and the protein was directed to lysosomes instead of the apical membrane. Together, our results demonstrated that desialylation by NEU1 plays a crucial role in processing and cellular trafficking of megalin and that NEU1 deficiency in sialidosis impairs megalin-mediated protein reabsorption.


Assuntos
Nefropatias , Mucolipidoses , Animais , Humanos , Camundongos , Nefropatias/metabolismo , Glomérulos Renais/metabolismo , Túbulos Renais Proximais/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Mucolipidoses/genética , Mucolipidoses/patologia , Neuraminidase/genética
11.
Sci Adv ; 9(26): eade6308, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37390204

RESUMO

Deleterious variants in N-acetylneuraminate pyruvate lyase (NPL) cause skeletal myopathy and cardiac edema in humans and zebrafish, but its physiological role remains unknown. We report generation of mouse models of the disease: NplR63C, carrying the human p.Arg63Cys variant, and Npldel116 with a 116-bp exonic deletion. In both strains, NPL deficiency causes drastic increase in free sialic acid levels, reduction of skeletal muscle force and endurance, slower healing and smaller size of newly formed myofibers after cardiotoxin-induced muscle injury, increased glycolysis, partially impaired mitochondrial function, and aberrant sialylation of dystroglycan and mitochondrial LRP130 protein. NPL-catalyzed degradation of sialic acid in the muscle increases after fasting and injury and in human patient and mouse models with genetic muscle dystrophy, demonstrating that NPL is essential for muscle function and regeneration and serves as a general marker of muscle damage. Oral administration of N-acetylmannosamine rescues skeletal myopathy, as well as mitochondrial and structural abnormalities in NplR63C mice, suggesting a potential treatment for human patients.


Assuntos
Ácido N-Acetilneuramínico , Peixe-Zebra , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Glicoproteínas , Músculo Esquelético , Piruvatos , Regeneração
12.
Exp Cell Res ; 317(17): 2456-67, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21835174

RESUMO

The compartmental nature of eukaryotic cells requires sophisticated mechanisms of protein sorting. Prosaposin, the precursor of four sphingolipid activator proteins, is transported from the trans-Golgi network (TGN) to lysosomes as a partially glycosylated (65 kDa) protein with high-mannose/hybrid oligosaccharides. Prosaposin is also found in the extracellular space where it is secreted as a fully glycosylated (70 kDa) protein composed of complex glycans. Although the trafficking of prosaposin to lysosomes is known to be mediated by sortilin, the mechanism of secretion of this protein is still unknown. In this study, we report that prosaposin may covalently aggregate into oligomers. Our results demonstrate that while prosaposin oligomers are secreted into the extracellular space, monomeric prosaposin remains inside the cell bound to sortilin. We also found that deletion of the C-terminus of prosaposin, previously shown to block its lysosomal transport, did not abolish its oligomerization and secretion. On the other hand, elimination of the N-terminus and of each saposin domain inhibited its oligomerization and resulted in its retention as a fully glycosylated protein. In conclusion, we are reporting for the first time that oligomerization of prosaposin is crucial for its entry into the secretory pathway.


Assuntos
Multimerização Proteica , Saposinas/química , Saposinas/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Lisossomos/metabolismo
13.
J Exp Med ; 219(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35704026

RESUMO

The majority of mucopolysaccharidosis IIIC (MPS IIIC) patients have missense variants causing misfolding of heparan sulfate acetyl-CoA:α-glucosaminide N-acetyltransferase (HGSNAT), which are potentially treatable with pharmacological chaperones. To test this approach, we generated a novel HgsnatP304L mouse model expressing misfolded HGSNAT Pro304Leu variant. HgsnatP304L mice present deficits in short-term and working/spatial memory 2-4 mo earlier than previously described constitutive knockout Hgsnat-Geo mice. HgsnatP304L mice also show augmented severity of neuroimmune response, synaptic deficits, and neuronal storage of misfolded proteins and gangliosides compared with Hgsnat-Geo mice. Expression of misfolded human Pro311Leu HGSNAT protein in cultured hippocampal Hgsnat-Geo neurons further reduced levels of synaptic proteins. Memory deficits and majority of brain pathology were rescued in mice receiving HGSNAT chaperone, glucosamine. Our data for the first time demonstrate dominant-negative effects of misfolded HGSNAT Pro304Leu variant and show that they are treatable by oral administration of glucosamine. This suggests that patients affected with mutations preventing normal folding of the enzyme can benefit from chaperone therapy.


Assuntos
Mucopolissacaridoses , Mucopolissacaridose III , Acetiltransferases , Animais , Glucosamina , Heparitina Sulfato , Humanos , Camundongos , Camundongos Knockout , Mucopolissacaridose III/genética , Mucopolissacaridose III/patologia
14.
PLoS One ; 16(4): e0250454, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33914781

RESUMO

In the epididymis, lysosomal proteins of the epithelial cells are normally targeted from the Golgi apparatus to lysosomes for degradation, although their secretion into the epididymal lumen has been documented and associated with sperm maturation. In this study, cathepsin D (CatD) and prosaposin (PSAP) were examined in adult epididymis of control, and 2-day castrated rats without (Ct) and with testosterone replacement (Ct+T) to evaluate their expression and regulation within epididymal epithelial cells. By light microscope-immunocytochemistry, a quantitative increase in size of lysosomes in principal cells of Ct animals was noted from the distal initial segment to the proximal cauda. Androgen replacement did not restore the size of lysosomes to control levels. Western blot analysis revealed a significant increase in CatD expression in the epididymis of Ct animals, which suggested an upregulation of its expression in principal cells; androgens restored levels of CatD to that of controls. In contrast, PSAP expression in Ct animals was not altered from controls. Additionally, an increase in procathepsin D levels was noted from samples of the epididymal fluid of Ct compared to control animals, accompanied by an increased complex formation with PSAP. Moreover, an increased oligomerization of prosaposin was observed in the epididymal lumen of Ct rats, with changes reverted to controls in Ct+T animals. Taken together these data suggest castration causes an increased uptake of substrates that are acted upon by CatD in lysosomes of principal cells and in the lumen by procathepsin D. These substrates may be derived from apoptotic cells noted in the lumen of proximal regions and possibly by degenerating sperm in distal regions of the epididymis of Ct animals. Exploring the mechanisms by which lysosomal enzymes are synthesized and secreted by the epididymis may help resolve some of the issues originating from epididymal dysfunctions with relevance to sperm maturation.


Assuntos
Androgênios/genética , Catepsina D/genética , Precursores Enzimáticos/genética , Saposinas/genética , Androgênios/metabolismo , Animais , Castração/efeitos adversos , Epididimo/crescimento & desenvolvimento , Epididimo/metabolismo , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/genética , Lisossomos/genética , Lisossomos/fisiologia , Masculino , Ratos , Espermatozoides/metabolismo , Testosterona/genética , Testosterona/metabolismo
15.
J Cell Biochem ; 110(5): 1101-10, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20564206

RESUMO

It is believed that the mammalian epididymis participates in the maturation of the sperm due to its secretory activity. High concentrations of several secreted acid hydrolases are found in the epididymal lumen. Moreover, some of these enzymes are secreted by the epididymal epithelium in an androgen-dependent fashion. In this study, we attempted to discern whether mannose-6-phosphate receptors (MPRs) regulate transport and secretion of lysosomal enzymes in the rat epididymis, and if these events are altered when the animals are subjected to hormonal manipulation. We observed that expression of cation-dependent MPR (CD-MPR) and cation-independent MPR (CI-MPR) increased significantly in caudal epididymis of castrated rats by immunoblot. This increase was corroborated by quantitation of MPRs, by binding assays. This change could be due to androgen deprivation, as a similar effect was observed after treatment with the anti-androgenic drug flutamide. Furthermore, we observed that the CD-MPR was redistributed to the apical area of the epithelium on castrated rats by immunohistochemistry, which is compatible with the redistribution of the receptors toward lighter fractions in a Percoll gradient. Consistent with a possible involvement of the CD-MPR in the secretion, we observed an increase in pro-cathepsin D levels in epididymal fluid after castration. We conclude that the CD-MPR might be regulated by hormones and that this receptor might be involved in the secretion of specific enzymes into the rat epididymis.


Assuntos
Epididimo/metabolismo , Orquiectomia , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Western Blotting , Catepsina D/metabolismo , Di-Hidrotestosterona/metabolismo , Ensaio de Imunoadsorção Enzimática , Epididimo/efeitos dos fármacos , Estradiol/metabolismo , Flutamida/farmacologia , Imuno-Histoquímica , Lisossomos/enzimologia , Lisossomos/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Receptor IGF Tipo 2 , Testosterona/metabolismo , alfa-Manosidase/metabolismo
16.
Hum Mol Genet ; 17(11): 1556-68, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18270209

RESUMO

Mammalian sialidase Neu4, ubiquitously expressed in human tissues, is located in the lysosomal and mitochondrial lumen and has broad substrate specificity against sialylated glycoconjugates. To investigate whether Neu4 is involved in ganglioside catabolism, we transfected beta-hexosaminidase-deficient neuroglia cells from a Tay-Sachs patient with a Neu4-expressing plasmid and demonstrated the correction of storage due to the clearance of accumulated GM2 ganglioside. To further clarify the biological role of Neu4, we have generated a stable loss-of-function phenotype in cultured HeLa cells and in mice with targeted disruption of the Neu4 gene. The silenced HeLa cells showed reduced activity against gangliosides and had large heterogeneous lysosomes containing lamellar structures. Neu4(-/-) mice were viable, fertile and lacked gross morphological abnormalities, but showed a marked vacuolization and lysosomal storage in lung and spleen cells. Lysosomal storage bodies were also present in cultured macrophages preloaded with gangliosides. Thin-layer chromatography showed increased relative level of GD1a ganglioside and a markedly decreased level of GM1 ganglioside in brain of Neu4(-/-) mice suggesting that Neu4 may be important for desialylation of brain gangliosides and consistent with the in situ hybridization data. Increased levels of cholesterol, ceramide and polyunsaturated fatty acids were also detected in the lungs and spleen of Neu4(-/-) mice by high-resolution NMR spectroscopy. Together, our data suggest that Neu4 is a functional component of the ganglioside-metabolizing system, contributing to the postnatal development of the brain and other vital organs.


Assuntos
Gangliosídeos/metabolismo , Lisossomos/metabolismo , Neuraminidase/genética , Neuraminidase/fisiologia , Animais , Comportamento Animal , Encéfalo/enzimologia , Encéfalo/fisiologia , Encéfalo/ultraestrutura , Catálise , Gangliosídeo G(M1)/análise , Gangliosídeo G(M1)/metabolismo , Gangliosídeo G(M2)/análise , Gangliosídeo G(M2)/metabolismo , Gangliosídeos/análise , Células HeLa , Humanos , Pulmão/enzimologia , Pulmão/ultraestrutura , Camundongos , Camundongos Knockout , Neuraminidase/metabolismo , Interferência de RNA , Baço/enzimologia , Baço/ultraestrutura , Distribuição Tecidual , beta-N-Acetil-Hexosaminidases/genética
17.
Exp Cell Res ; 315(18): 3112-24, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19732768

RESUMO

Lysosomes are intracellular organelles which contain enzymes and activator proteins involved in the digestion and recycling of a variety of cellular and extracellular substances. We have identified a novel sorting receptor, sortilin, which is involved in the lysosomal trafficking of the sphingolipid activator proteins, prosaposin and GM(2)AP, and the soluble hydrolases cathepsin D, cathepsin H, and acid sphingomyelinase. Sortilin belongs to a growing family of receptors with homology to the yeast Vps10 protein, which acts as a lysosomal sorting receptor for carboxypeptidase Y. In this study we examined the effects of the sortilin gene inactivation in mice. The inactivation of this gene did not yield any noticeable lysosomal pathology. To determine the existence of an alternative receptor complementing the sorting function of sortilin, we quantified the concentration of prosaposin in the lysosomes of the nonciliated epithelial cells lining the efferent ducts. These cells were chosen because they express sortilin and have a large number of lysosomes containing prosaposin. In addition, the nonciliated cells are known to endocytose luminal prosaposin that is synthesized and secreted by Sertoli cells into the seminiferous luminal fluids. Consequently, the nonciliated cells are capable of targeting both exogenous and endogenous prosaposin to the lysosomes. Using electron microscope immunogold labeling and quantitative analysis, our results demonstrate that inactivation of the sortilin gene produces a significant decrease of prosaposin in the lysosomes. When luminal prosaposin was excluded from the efferent ducts, the level of prosaposin in lysosomes was even lower in the mutant mice. Nonetheless, a significant amount of prosaposin continues to reach the lysosomal compartment. These results strongly suggest the existence of an alternative receptor that complements the function of sortilin and explains the lack of lysosomal storage disorders in the sortilin-deficient mice.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Lisossomos/metabolismo , Saposinas/metabolismo , Testículo/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Catepsina D/metabolismo , Catepsina H , Catepsinas/metabolismo , Cisteína Endopeptidases/metabolismo , Lisossomos/ultraestrutura , Masculino , Camundongos , Camundongos Knockout , Microscopia Imunoeletrônica , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley , Esfingomielina Fosfodiesterase/metabolismo , Testículo/ultraestrutura
18.
Exp Cell Res ; 315(2): 240-7, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18992238

RESUMO

Most soluble lysosomal hydrolases are sorted in the trans-Golgi network (TGN) and delivered to the lysosomes by the mannose 6-phosphate receptor (M6PR). However, the non-enzymic sphingolipid activator protein (SAP), prosaposin, as well as certain soluble lysosomal hydrolases, is sorted and trafficked to the lysosomes by sortilin. Based on previous results demonstrating that prosaposin requires sphingomyelin to be targeted to the lysosomes, we hypothesized that sortilin and its ligands are found in detergent-resistant membranes (DRMs). To test this hypothesis we have analyzed DRM fractions and demonstrated the presence of sortilin and its ligand, prosaposin. Our results showed that both the M6PR and its cargo, cathepsin B, were also present in DRMs. Cathepsin H has previously been demonstrated to interact with sortilin, while cathepsin D interacts with both sortilin and the M6PR. Both of these soluble lysosomal proteins were also found in DRM fractions. Using sortilin shRNA we have showed that prosaposin is localized to DRM fractions only in the presence of sortilin. These observations suggest that in addition to interacting with the same adaptor proteins, such as GGAs, AP-1 and retromer, both sortilin and the M6PR localize to similar membrane platforms, and that prosaposin must interact with sortilin to be recruited to DRMs.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Microdomínios da Membrana/metabolismo , Saposinas/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Western Blotting , Células COS , Chlorocebus aethiops , Complexo de Golgi , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imunoprecipitação , Lisossomos , Microscopia Confocal , Ligação Proteica/fisiologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Transporte Proteico , Interferência de RNA , Receptor IGF Tipo 2/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Saposinas/genética , Transfecção
19.
Circulation ; 117(15): 1973-81, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18391110

RESUMO

BACKGROUND: Lysosomal carboxypeptidase, cathepsin A (protective protein, CathA), is a component of the lysosomal multienzyme complex along with beta-galactosidase (GAL) and sialidase Neu1, where it activates Neu1 and protects GAL and Neu1 against the rapid proteolytic degradation. On the cell surface, CathA, Neu1, and the enzymatically inactive splice variant of GAL form the elastin-binding protein complex. In humans, genetic defects of CathA cause galactosialidosis, a metabolic disease characterized by combined deficiency of CathA, GAL, and Neu1 and a lysosomal storage of sialylated glycoconjugates. However, several phenotypic features of galactosialidosis patients, including hypertension and cardiomyopathies, cannot be explained by the lysosomal storage. These observations suggest that CathA may be involved in hemodynamic functions that go beyond its protective activity in the lysosome. METHODS AND RESULTS: We generated a gene-targeted mouse in which the active CathA was replaced with a mutant enzyme carrying a Ser190Ala substitution in the active site. These animals expressed physiological amounts of catalytically inactive CathA protein, capable of forming lysosomal multienzyme complex, and did not develop secondary deficiency of Neu1 and GAL. Conversely, the mice showed a reduced degradation rate of the vasoconstrictor peptide, endothelin-1, and significantly increased arterial blood pressure. CathA-deficient mice also displayed scarcity of elastic fibers in lungs, aortic adventitia, and skin. CONCLUSIONS: Our results provide the first evidence that CathA acts in vivo as an endothelin-1-inactivating enzyme and strongly confirm a crucial role of this enzyme in effective elastic fiber formation.


Assuntos
Catepsina A/fisiologia , Tecido Elástico/metabolismo , Endotelina-1/antagonistas & inibidores , Hipertensão/genética , Animais , Pressão Sanguínea/efeitos dos fármacos , Catepsina A/genética , Células Cultivadas/enzimologia , Células Cultivadas/ultraestrutura , Tecido Elástico/ultraestrutura , Elastina/metabolismo , Endotelina-1/farmacologia , Endotelina-1/fisiologia , Ativação Enzimática , Fibroblastos/enzimologia , Fibroblastos/ultraestrutura , Genes Sintéticos , Hipertensão/enzimologia , Hipertensão/patologia , Lisossomos/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multienzimáticos , Neuraminidase/metabolismo , Neurônios/enzimologia , Neurônios/ultraestrutura , Especificidade de Órgãos , RNA Mensageiro/biossíntese , Cloreto de Sódio na Dieta/efeitos adversos , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA