Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 31(12): 20068-20079, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381408

RESUMO

In this paper, we introduce optics-informed Neural Networks and demonstrate experimentally how they can improve performance of End-to-End deep learning models for IM/DD optical transmission links. Optics-informed or optics-inspired NNs are defined as the type of DL models that rely on linear and/or nonlinear building blocks whose mathematical description stems directly from the respective response of photonic devices, drawing their mathematical framework from neuromorphic photonic hardware developments and properly adapting their DL training algorithms. We investigate the application of an optics-inspired activation function that can be obtained by a semiconductor-based nonlinear optical module and is a variant of the logistic sigmoid, referred to as the Photonic Sigmoid, in End-to-End Deep Learning configurations for fiber communication links. Compared to state-of-the-art ReLU-based configurations used in End-to-End DL fiber link demonstrations, optics-informed models based on the Photonic Sigmoid show improved noise- and chromatic dispersion compensation properties in fiber-optic IM/DD links. An extensive simulation and experimental analysis revealed significant performance benefits for the Photonic Sigmoid NNs that can reach below BER HD FEC limit for fiber lengths up to 42 km, at an effective bit transmission rate of 48 Gb/s.

2.
Opt Express ; 30(15): 26628-26638, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236851

RESUMO

We demonstrate a temperature and wavelength shift resilient silicon transmission and routing interconnect system suitable for multi-socket interconnects, utilizing a dual-strategy CLIPP feedback circuitry that safeguards the operating point of the constituent photonic building blocks along the entire on-chip transmission-multiplexing-routing chain. The control circuit leverages a novel control power-independent and calibration-free locking strategy that exploits the 2nd derivative of ring resonator modulators (RMs) transfer function to lock them close to the point of minimum transmission penalty. The system performance was evaluated on an integrated Silicon Photonics 2-socket demonstrator, enforcing control over a chain of RM-MUX-AWGR resonant structures and stressed against thermal and wavelength shift perturbations. The thermal and wavelength stress tests ranged from 27°C to 36°C and 1309.90 nm to 1310.85 nm and revealed average eye diagrams Q-factor values of 5.8 and 5.9 respectively, validating the system robustness to unstable environments and fabrication variations.

3.
Opt Express ; 28(4): 5706-5714, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32121786

RESUMO

We demonstrate a 200G capable WDM O-band optical transceiver comprising a 4-element array of Silicon Photonics ring modulators (RM) and Ge photodiodes (PD) co-packaged with a SiGe BiCMOS integrated driver and a SiGe transimpedance amplifier (TIA) chip. A 4×50 Gb/s data modulation experiment revealed an average extinction ratio (ER) of 3.17 dB, with the transmitter exhibiting a total energy efficiency of 2 pJ/bit. Data reception has been experimentally validated at 50 Gb/s per lane, achieving an interpolated 10E-12 bit error rate (BER) for an input optical modulation amplitude (OMA) of -9.5 dBm and a power efficiency of 2.2 pJ/bit, yielding a total power efficiency of 4.2 pJ/bit for the transceiver, including heater tuning requirements. This electro-optic subassembly provides the highest aggregate data-rate among O-band RM-based silicon photonic transceiver implementations, highlighting its potential for next generation WDM Ethernet transceivers.

4.
Opt Express ; 27(22): 32409-32426, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31684455

RESUMO

In this paper, we present the design, fabrication and characterization of a carrier depletion silicon-photonic switch based on a highly doped vertical pn junction. The vertical nature of the pn junction enables the device to exhibit a modulation efficiency as high as 0.23 V.cm. Fast switching times of 60ps are achieved in a lumped configuration. Moreover, the process flow is highly tolerant to fabrication deviations allowing a seamless transfer to the 350 nm process node of a commercial complementary-metal-oxide semiconductor (CMOS) foundry. Overall, this work showcases the possibility of fabricating highly efficient carrier depletion-based silicon photonic switches using medium resolution lithography.

5.
Opt Express ; 26(7): 8756-8766, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29715839

RESUMO

Departing from traditional server-centric data center architectures towards disaggregated systems that can offer increased resource utilization at reduced cost and energy envelopes, the use of high-port switching with highly stringent latency and bandwidth requirements becomes a necessity. We present an optical switch architecture exploiting a hybrid broadcast-and-select/wavelength routing scheme with small-scale optical feedforward buffering. The architecture is experimentally demonstrated at 10Gb/s, reporting error-free performance with a power penalty of <2.5dB. Moreover, network simulations for a 256-node system, revealed low-latency values of only 605nsec, at throughput values reaching 80% when employing 2-packet-size optical buffers, while multi-rack network performance was also investigated.

6.
Nat Commun ; 15(1): 5468, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937494

RESUMO

Recently there has been growing interest in using photonics to perform the linear algebra operations of neuromorphic and quantum computing applications, aiming at harnessing silicon photonics' (SiPho) high-speed and energy-efficiency credentials. Accurately mapping, however, a matrix into optics remains challenging, since state-of-the-art optical architectures are sensitive to fabrication imperfections. This leads to reduced fidelity that degrades as the insertion losses of the optical matrix nodes or the matrix dimensions increase. In this work, we present the experimental deployment of a 4 × 4 coherent crossbar (Xbar) as a silicon chip and validate experimentally its theoretically predicted fidelity restoration credentials. We demonstrate the experimental implementation of 10,000 arbitrary linear transformations achieving a record-high fidelity of 99.997% ± 0.002, limited mainly by the measurement equipment. Our work represents an integrated optical circuit providing almost unity and loss-independent fidelity in the realization of arbitrary matrices, highlighting light's credentials in resolving complex computations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA