Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Adv Exp Med Biol ; 1402: 3-29, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37052843

RESUMO

Cartilages are unique in the family of connective tissues in that they contain a high concentration of the glycosaminoglycans, chondroitin sulfate and keratan sulfate attached to the core protein of the proteoglycan, aggrecan. Multiple aggrecan molecules are organized in the extracellular matrix via a domain-specific molecular interaction with hyaluronan and a link protein, and these high molecular weight aggregates are immobilized within the collagen and glycoprotein network. The high negative charge density of glycosaminoglycans provides hydrophilicity, high osmotic swelling pressure and conformational flexibility, which together function to absorb fluctuations in biomechanical stresses on cartilage during movement of an articular joint. We have summarized information on the history and current knowledge obtained by biochemical and genetic approaches, on cell-mediated regulation of aggrecan metabolism and its role in skeletal development, growth as well as during the development of joint disease. In addition, we describe the pathways for hyaluronan metabolism, with particular focus on the role as a "metabolic rheostat" during chondrocyte responses in cartilage remodeling in growth and disease.Future advances in effective therapeutic targeting of cartilage loss during osteoarthritic diseases of the joint as an organ as well as in cartilage tissue engineering would benefit from 'big data' approaches and bioinformatics, to uncover novel feed-forward and feed-back mechanisms for regulating transcription and translation of genes and their integration into cell-specific pathways.


Assuntos
Cartilagem Articular , Ácido Hialurônico , Agrecanas/genética , Agrecanas/análise , Agrecanas/metabolismo , Ácido Hialurônico/metabolismo , Polieletrólitos/análise , Polieletrólitos/metabolismo , Polieletrólitos/farmacologia , Cartilagem Articular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Glicosaminoglicanos , Lectinas Tipo C/metabolismo
2.
FASEB J ; 34(11): 14302-14317, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32931052

RESUMO

Particles released from implants cause inflammatory bone loss, which is a key factor in aseptic loosening, the most common reason for joint replacement failure. With the anticipated increased incidence of total joint replacement in the next decade, implant failure will continue to burden patients. The gut microbiome is increasingly recognized as an important factor in bone physiology, however, its role in implant loosening is currently unknown. We tested the hypothesis that implant loosening is associated with changes in the gut microbiota in a preclinical model. When the particle challenge caused local joint inflammation, decreased peri-implant bone volume, and decreased implant fixation, the gut microbiota was affected. When the particle challenge did not cause this triad of local effects, the gut microbiota was not affected. Our results suggest that cross-talk between these compartments is a previously unrecognized mechanism of failure following total joint replacement.


Assuntos
Microbioma Gastrointestinal , Inflamação/patologia , Osteólise/patologia , Próteses e Implantes/efeitos adversos , Infecções Relacionadas à Prótese/patologia , Animais , Inflamação/etiologia , Masculino , Osteólise/etiologia , Infecções Relacionadas à Prótese/etiologia , Ratos
3.
J Bone Miner Res ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655758

RESUMO

Preterm birth affects about 10% of all live births with many resultant health challenges, including metabolic bone disease of prematurity (MBDP) which is characterized by elevated alkaline phosphatase, suppressed phosphate, and deficient skeletal development. Because of the lack of an animal model, very little is known about bone structure, strength, and quality after preterm birth. This study investigated the utility of a pig model to replicate clinical features of preterm birth, including MBDP, and sought to determine if early postnatal administration of insulin-like growth factor (IGF)-1 was an effective treatment. Preterm pigs, born by caesarean section at 90% gestation, were reared in intensive care facilities (respiratory, thermoregulatory and nutritional support) and compared with sow-reared term pigs born vaginally. Preterm pigs were systemically treated with vehicle or IGF-1 (recombinant human IGF-1/BP-3, 2.25 mg/kg/day). Tissues were collected at postnatal days 1, 5, and 19 (the normal weaning period in pigs). Most bone-related outcomes were affected by preterm birth throughout the study period whereas IGF-1 supplementation had almost no effect. By day 19, alkaline phosphatase was elevated, phosphate and calcium were reduced, and the bone resorption marker CTX-1 was elevated in preterm pigs compared to term pigs. Preterm pigs also had decrements in femoral cortical cross-sectional properties, consistent with reduced whole-bone strength. Thus, the preterm pig model replicates many features of preterm bone development in infants, including features of MBDP, and allows for direct interrogation of skeletal tissues, enhancing the field's ability to examine underlying mechanisms.


Premature birth interrupts a critical period of skeletal development as the majority of fetal bone mineral accumulation occurs during the last gestational trimester, leaving preterm infants at increased risk for low bone mineral density and fractures. While there are some data on growth in bone mass in preterm infants, very little is known about bone structural properties, quality, and strength during development after preterm birth. In this study we sought to evaluate the pig as a model for postnatal skeletal development after premature birth. Preterm pigs born after approximately 90% of the full gestation period were compared to full-term control pigs through day 19 of life. Levels of two blood markers used to diagnose osteoporosis of prematurity were replicated in the pig model. Bone properties related to strength were reduced even when accounting for their smaller body size, possibly suggesting elevated fracture risk in preterm infants. Based on the similarities between the preterm pig model and preterm human infants, the pig model may prove to be useful to study factors and interventions affecting postnatal bone development after preterm birth.

4.
J Orthop Res ; 40(8): 1834-1843, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34811780

RESUMO

Canonical Wnt signaling plays an important role in skeletal development, homeostasis, and both endochondral and intramembranous repair. While studies have demonstrated that the inhibition of Wnt signaling impairs intramembranous bone regeneration, how its activation affects intramembranous bone regeneration has been underexplored. Therefore, we sought to determine the effects of activation of canonical Wnt signaling on intramembranous bone regeneration by using the well-established marrow ablation model. We hypothesized that mice with a mutation in the Wnt ligand coreceptor gene Lrp5 would have accelerated intramembranous bone regeneration. Male and female wild-type and Lrp5-mutant mice underwent unilateral femoral bone marrow ablation surgery in the right femur at 4 weeks of age. Both the left intact and right operated femurs were assessed at Days 3, 5, 7, 10, and 14. The intact femur of Lrp5 mutant mice of both sexes had higher bone mass than wild-type littermates, although to a greater degree in males than females. Overall, the regenerated bone volume in Lrp5 mutant male mice was 1.8-fold higher than that of littermate controls, whereas no changes were observed between female Lrp5 mutant and littermate control mice. In addition, the rate of intramembranous bone regeneration (from Day 3 to Day 7) was higher in Lrp5 mutant male mice compared to their same-sex littermate controls with no difference in the females. Thus, activation of canonical Wnt signaling increases bone mass in intact bones of both sexes, but accelerates intramembranous bone regeneration following an injury challenge only in male mice.


Assuntos
Regeneração Óssea , Via de Sinalização Wnt , Animais , Densidade Óssea , Osso e Ossos , Feminino , Fêmur , Masculino , Camundongos
5.
Bone ; 164: 116524, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36028119

RESUMO

There are over one million cases of failed bone repair in the U.S. annually, resulting in substantial patient morbidity and societal costs. Multiple candidate genes affecting bone traits such as bone mineral density have been identified in human subjects and animal models using genome-wide association studies (GWAS). This approach for understanding the genetic factors affecting bone repair is impractical in human subjects but could be performed in a model organism if there is sufficient variability and heritability in the bone regeneration response. Diversity Outbred (DO) mice, which have significant genetic diversity and have been used to examine multiple intact bone traits, would be an excellent possibility. Thus, we sought to evaluate the phenotypic distribution of bone regeneration, sex effects and heritability of intramembranous bone regeneration on day 7 following femoral marrow ablation in 47 12-week old DO mice (23 males, 24 females). Compared to a previous study using 4 inbred mouse strains, we found similar levels of variability in the amount of regenerated bone (coefficient of variation of 86 % v. 88 %) with approximately the same degree of heritability (0.42 v. 0.49). There was a trend toward more bone regeneration in males than females. The amount of regenerated bone was either weakly or not correlated with bone mass at intact sites, suggesting that the genetic factors responsible for bone regeneration and intact bone phenotypes are at least partially independent. In conclusion, we demonstrate that DO mice exhibit variation and heritability of intramembranous bone regeneration that will be suitable for future GWAS.


Assuntos
Camundongos de Cruzamento Colaborativo , Estudo de Associação Genômica Ampla , Animais , Densidade Óssea/genética , Regeneração Óssea/genética , Osso e Ossos , Camundongos de Cruzamento Colaborativo/genética , Feminino , Humanos , Masculino , Camundongos , Fenótipo
6.
PLoS One ; 16(11): e0257310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34735461

RESUMO

Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the intestinal tract and is associated with decreased bone mineral density. IBD patients are at higher risk of osteopenia, osteoporosis and fracture compared to non-IBD patients. The impact of IBD on the performance of orthopedic implants has not been well studied. We hypothesized that a history of IBD at the time of primary total hip arthroplasty (THA) would increase the risk of subsequent failure as assessed by revision surgery. A retrospective implant survival analysis was completed using the Swedish Hip Arthroplasty Registry and the Sweden National Patient Register. A total of 150,073 patients undergoing THA for osteoarthritis within an 18-year period were included in the study. THA patients with (n = 2,604) and without (n = 147,469) a history of IBD at the time of THA were compared with primary revision as the main endpoint and adjusted using sex, age category and comorbidity (Elixhauser scores) as covariates. We found that patients with a history of IBD had a relatively higher risk of revision surgery for septic causes while the non-IBD patients had a relatively higher risk of revision for aseptic causes (p = 0.004). Our findings suggest there may be an association between gut health and THA performance.


Assuntos
Densidade Óssea , Doenças Inflamatórias Intestinais/cirurgia , Osteoartrite/cirurgia , Reoperação , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Artroplastia de Quadril/efeitos adversos , Doenças Ósseas Metabólicas/etiologia , Doenças Ósseas Metabólicas/fisiopatologia , Doenças Ósseas Metabólicas/cirurgia , Feminino , Prótese de Quadril/efeitos adversos , Humanos , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/fisiopatologia , Masculino , Pessoa de Meia-Idade , Osteoartrite/etiologia , Osteoartrite/fisiopatologia , Osteoporose/etiologia , Osteoporose/fisiopatologia , Osteoporose/cirurgia , Falha de Prótese/efeitos adversos , Sistema de Registros , Fatores de Risco , Suécia
7.
J Orthop Res ; 38(6): 1216-1227, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31825107

RESUMO

Biomarkers are of interest to identify patients at risk for peri-implant osteolysis and aseptic loosening. We used a rat model of particle-induced peri-implant osteolysis to investigate if early changes in biomarkers were associated with subsequent implant fixation strength. Implants were placed in rat femora, which were then challenged with intra-articular knee injections of either clean polyethylene, lipopolysaccharide-doped polyethylene, or cobalt-chromium alloy particles, with particle-free vehicle serving as control (n ≥ 8 per group). Rats were weighed weekly, blood was collected at weeks 0, 3, 5, and 6, and locomotor behavior was assessed 4 days before study conclusion. Rats were euthanized 6 weeks post surgery. Week 6 serum was analyzed for five bone remodeling markers, while longitudinal serum was assessed for osteocalcin. Bone-implant contact, peri-implant trabecular architecture, and implant fixation strength were measured. Rats challenged with cobalt-chromium particles had a significant reduction in implant fixation strength compared with the vehicle-control group (P = .034). This group also had elevated serum osteocalcin (P = .005), depressed weight gain (P = .001) and less frequent rearing behavior (P = .029). Regardless of group, change in serum osteocalcin at week 3 (r = -.368; P = .046), change in weight at week 2 (r = .586; P < .001), as well as weight change at all other time intervals were associated with fixation strength. The finding that early alterations in serum osteocalcin and body weight were predictive of subsequent implant fixation strength supports continued investigation of biomarkers for early detection of peri-implant osteolysis and implant loosening. Further, change in biomarker levels was found to be more indicative of implant fixation status than any single measurement.


Assuntos
Peso Corporal , Implantes Experimentais/efeitos adversos , Osteocalcina/sangue , Animais , Biomarcadores/sangue , Remodelação Óssea , Lipopolissacarídeos/farmacologia , Masculino , Atividade Motora , Osteólise , Polietileno/farmacologia , Ratos , Ratos Sprague-Dawley
9.
J Orthop Res ; 35(12): 2595-2605, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28548682

RESUMO

We completed a systematic literature review of in vivo animal models that use arthrotomy-based methods to study particle-induced peri-implant osteolysis. The purpose of the review was to characterize the models developed to date, to determine the questions addressed, to assess scientific rigor and transparency, and to identify gaps in knowledge. We probed three literature databases (Medline, Embase, and Scopus) and found 77 manuscripts that fit the search parameters. In the most recent 10 years, researchers mainly used rat and mouse models, whereas in the previous 20 years, large animal, canine, and rabbit models were more common. The studies have demonstrated several pathophysiology pathways, including macrophage migration, particle phagocytosis, increased local production of cytokines and lysosomal enzymes, elevated bone resorption, and suppressed bone formation. The effect of variation in particle characteristics and concentration received limited attention with somewhat mixed findings. Particle contamination by endotoxin was shown to exacerbate peri-implant osteolysis. The possibility of early diagnosis was demonstrated through imaging and biomarker approaches. Several studies showed that both local and systemic delivery of bisphosphonates inhibits the development of particle-induced osteolysis. Other methods of inhibiting osteolysis include the use of anabolic agents and altering the implant design. Few studies examined non-surgical rescue of loosened implants, with conflicting results with alendronate. We found that the manuscripts often lacked the methodological detail now advocated by the ARRIVE guidelines, suggesting that improvement in reporting would be useful to maximize rigor and transparency. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2595-2605, 2017.


Assuntos
Modelos Animais de Doenças , Osteólise , Animais
10.
J Orthop Res ; 35(12): 2740-2748, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28471533

RESUMO

Articular cartilage lines the load-bearing surfaces of long bones and undergoes compositional and structural degeneration during osteoarthritis progression. Contrast enhanced microcomputed tomography (µCT) is being applied to a variety of preclinical models, including the mouse, to map structural and compositional properties in 3-D. The thinness (∼30-50 µm) and high cellularity of mouse articular cartilage presents a significant imaging challenge. Our group previously showed that mouse articular cartilage and proteoglycan (PG) content can be assessed by µCT with the ioxagalate-based contrast agent Hexabrix, but the voxel size used (6 µm) was deemed to be barely adequate. The objective of the present study is to assess the utility of a novel contrast agent, CA4+, to quantify mouse articular cartilage morphology and composition with high resolution µCT imaging (3 µm voxels) and to compare the sensitivity of CA4+ and Hexabrix to detect between-group differences. While both contrast agents are iodine-based, Hexabrix is anionic and CA4+ is cationic so they interact differently with negatively charged PGs. With CA4+, a strong correlation was found between non-calcified articular cartilage thickness measurements made with histology and µCT (R2 = 0.72, p < 0.001). Cartilage degeneration-as assessed by loss in volume, thickness, and PG content-was observed in 34-week-old mice when compared to both 7- and 12-week-old mice. High measurement precision was observed with CA4+, with the coefficient of variation after repositioning and re-imaging samples equaling 2.8%, 4.5%, 7.4% and 5.9% for attenuation, thickness, volume, and PG content, respectively. Use of CA4+ allowed increased sensitivity for assessing PG content compared to Hexabrix, but had no advantage for measurement of cartilage thickness or volume. This improvement in imaging should prove useful in preclinical studies of cartilage degeneration and regeneration. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2740-2748, 2017.


Assuntos
Cartilagem Articular/diagnóstico por imagem , Meios de Contraste , Animais , Avaliação Pré-Clínica de Medicamentos , Feminino , Ácido Ioxáglico , Camundongos Endogâmicos C57BL , Tripsina , Microtomografia por Raio-X
11.
Bonekey Rep ; 5: 837, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27648259

RESUMO

In this paper, we provide a detailed protocol for a model of long bone mechanical marrow ablation in the rodent, including surgical procedure, anesthesia, and pre- and post-operative care. In addition, frequently used experimental end points are briefly discussed. This model was developed to study intramembranous bone regeneration following surgical disruption of the marrow contents of long bones. In this model, the timing of the appearance of bone formation and remodeling is well-characterized and therefore the model is well-suited to evaluate the in vivo effects of various agents which influence these processes. When biomaterials such as tissue engineering scaffolds or metal implants are placed in the medullary cavity after marrow ablation, end points relevant to tissue engineering and implant fixation can also be analyzed. By sharing a detailed protocol, we hope to improve inter-laboratory reproducibility.

12.
J Orthop Res ; 33(9): 1374-81, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25808034

RESUMO

Various intact and post-injury bone phenotypes are heritable traits. In this study, we sought to determine if intramembranous bone regeneration following marrow ablation differed among common inbred mouse strains and to identify how early the differences appear. We found a ∼four-fold difference in the regenerated bone volume 21 days after marrow ablation in females from four inbred mouse strains: FVB/N (15.7 ± 8.1%, mean and standard deviation), C3H/He (15.5 ± 4.2%), C57BL/6 (12.2 ± 5.2%), and BALB/c (4.0 ± 4.4%); with BALB/c different from FVB/N (p = 0.007) and C3H/He (p = 0.002). A second experiment showed that FVB/N compared to BALB/c mice had more regenerated bone 7 and 14 days after ablation (p < 0.001), while at 21 days FVB/N mice had a greater fraction of mineralizing surface (p = 0.008) without a difference in mineral apposition rate. Thus, differences among strains are evident early during intramembranous bone regeneration following marrow ablation and appear to be associated with differences in osteogenic cell recruitment, but not osteoblast activity. The amount of regenerating bone was not correlated with other heritable traits such as the intact bone phenotype or soft tissue wound healing, suggesting that there may be independent genetic pathways for these traits.


Assuntos
Medula Óssea/patologia , Regeneração Óssea , Animais , Osso e Ossos/patologia , Feminino , Fêmur/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Osteoblastos/citologia , Osteogênese/fisiologia , Fenótipo , Regeneração , Especificidade da Espécie
13.
Anat Rec (Hoboken) ; 294(10): 1743-56, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21901843

RESUMO

We describe the bony and cartilaginous structures of five fetal skulls of Stenella attenuata (pantropical spotted dolphin) specimens. The specimens represent early fetal life as suggested by the presence of rostral tactile hairs and the beginnings of skin pigmentation. These specimens exhibit the developmental order of ossification of the intramembranous and endochondral elements of the cranium as well as the functional and morphological development of specific cetacean anatomical adaptations. Detailed observations are presented on telescoping, nasal anatomy, and middle ear anatomy. The development of the middle ear ossicles, ectotympanic bone, and median nasal cartilage is of interest because in the adult these structures are morphologically different from those in land mammals. We follow specific cetacean morphological characteristics through fetal development to provide insight into the form and function of the cetacean body plan. Combining these data with fossil evidence, it is possible to overlie ontogenetic patterns and discern evolutionary patterns of the cetacean skull.


Assuntos
Crânio/anatomia & histologia , Crânio/crescimento & desenvolvimento , Stenella/anatomia & histologia , Stenella/crescimento & desenvolvimento , Animais , Ossículos da Orelha/anatomia & histologia , Ossículos da Orelha/crescimento & desenvolvimento , Orelha Média/anatomia & histologia , Orelha Média/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA