RESUMO
Cobalamin (vitamin B12, herein referred to as B12) is an essential cofactor for most marine prokaryotes and eukaryotes1,2. Synthesized by a limited number of prokaryotes, its scarcity affects microbial interactions and community dynamics2-4. Here we show that two bacterial B12 auxotrophs can salvage different B12 building blocks and cooperate to synthesize B12. A Colwellia sp. synthesizes and releases the activated lower ligand α-ribazole, which is used by another B12 auxotroph, a Roseovarius sp., to produce the corrin ring and synthesize B12. Release of B12 by Roseovarius sp. happens only in co-culture with Colwellia sp. and only coincidently with the induction of a prophage encoded in Roseovarius sp. Subsequent growth of Colwellia sp. in these conditions may be due to the provision of B12 by lysed cells of Roseovarius sp. Further evidence is required to support a causative role for prophage induction in the release of B12. These complex microbial interactions of ligand cross-feeding and joint B12 biosynthesis seem to be widespread in marine pelagic ecosystems. In the western and northern tropical Atlantic Ocean, bacteria predicted to be capable of salvaging cobinamide and synthesizing only the activated lower ligand outnumber B12 producers. These findings add new players to our understanding of B12 supply to auxotrophic microorganisms in the ocean and possibly in other ecosystems.
Assuntos
Alteromonadaceae , Ligantes , Rhodobacteraceae , Vitamina B 12 , Oceano Atlântico , Técnicas de Cocultura , Interações Microbianas , Prófagos/genética , Prófagos/crescimento & desenvolvimento , Prófagos/metabolismo , Vitamina B 12/biossíntese , Vitamina B 12/química , Vitamina B 12/metabolismo , Alteromonadaceae/crescimento & desenvolvimento , Alteromonadaceae/metabolismo , Rhodobacteraceae/citologia , Rhodobacteraceae/metabolismo , Rhodobacteraceae/virologia , Ribonucleosídeos/metabolismo , Cobamidas/metabolismo , EcossistemaRESUMO
A new heterotrophic, aerobic alphaproteobacterium, designated strain SH36 (=DSM 23330=LMG 25292), was obtained from a seawater sample collected in the open North Sea during a phytoplankton bloom. Analysis of the 16S rRNA gene sequence revealed affiliation of strain SH36 to the species Lentibacter algarum (family Roseobacteraceae), showing 100 and 99.9â% sequence similarity to the 16S rRNA genes of the strains L. algarum ZXM098 and ZXM100T. Digital DNA-DNA hybridization of strain SH36 with the type strain of L. algarum showed 98.0â% relatedness, confirming that strain SH36 can be classified within the same species. All three L. algarum strains were compared by physiological, morphological, chemotaxonomic, and genotypic characteristics. The strains showed only minor differences in the composition of fatty acids and polar lipids, but considerable physiological differences. Comparison of the 16S rRNA gene sequence of SH36 with sequences present in GenBank revealed that phylotypes with ≥98.65â% sequence identity to the type strain of L. algarum were found at different marine and estuarine locations of temperate and subtropic regions. Furthermore, by using a specific PCR approach L. algarum was detected throughout annual cycles at the offshore station at Helgoland Roads in the German Bight, indicating that this species is a permanent member of the microbial community in the North Sea.
Assuntos
Técnicas de Tipagem Bacteriana , DNA Bacteriano , Ácidos Graxos , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Água do Mar , Análise de Sequência de DNA , Mar do Norte , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , DNA Bacteriano/genética , Ácidos Graxos/análise , Composição de Bases , Rhodobacteraceae/genética , Rhodobacteraceae/isolamento & purificação , Rhodobacteraceae/classificaçãoRESUMO
This article summarises the activities of the Bacterial Viruses Subcommittee of the International Committee on Taxonomy of Viruses for the period of March 2021-March 2022. We provide an overview of the new taxa proposed in 2021, approved by the Executive Committee, and ratified by vote in 2022. Significant changes to the taxonomy of bacterial viruses were introduced: the paraphyletic morphological families Podoviridae, Siphoviridae, and Myoviridae as well as the order Caudovirales were abolished, and a binomial system of nomenclature for species was established. In addition, one order, 22 families, 30 subfamilies, 321 genera, and 862 species were newly created, promoted, or moved.
Assuntos
Bacteriófagos , Caudovirales , Siphoviridae , Vírus , Humanos , Vírus/genética , MyoviridaeRESUMO
MOTIVATION: Viruses infect, reprogram and kill microbes, leading to profound ecosystem consequences, from elemental cycling in oceans and soils to microbiome-modulated diseases in plants and animals. Although metagenomic datasets are increasingly available, identifying viruses in them is challenging due to poor representation and annotation of viral sequences in databases. RESULTS: Here, we establish efam, an expanded collection of Hidden Markov Model (HMM) profiles that represent viral protein families conservatively identified from the Global Ocean Virome 2.0 dataset. This resulted in 240 311 HMM profiles, each with at least 2 protein sequences, making efam >7-fold larger than the next largest, pan-ecosystem viral HMM profile database. Adjusting the criteria for viral contig confidence from 'conservative' to 'eXtremely Conservative' resulted in 37 841 HMM profiles in our efam-XC database. To assess the value of this resource, we integrated efam-XC into VirSorter viral discovery software to discover viruses from less-studied, ecologically distinct oxygen minimum zone (OMZ) marine habitats. This expanded database led to an increase in viruses recovered from every tested OMZ virome by â¼24% on average (up to â¼42%) and especially improved the recovery of often-missed shorter contigs (<5 kb). Additionally, to help elucidate lesser-known viral protein functions, we annotated the profiles using multiple databases from the DRAM pipeline and virion-associated metaproteomic data, which doubled the number of annotations obtainable by standard, single-database annotation approaches. Together, these marine resources (efam and efam-XC) are provided as searchable, compressed HMM databases that will be updated bi-annually to help maximize viral sequence discovery and study from any ecosystem. AVAILABILITY AND IMPLEMENTATION: The resources are available on the iVirus platform at (doi.org/10.25739/9vze-4143). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Microbiota , Vírus , Animais , Proteínas Virais , Software , Metagenômica/métodosRESUMO
Microbial populations often display different degrees of heterogeneity in their substrate assimilation, that is, anabolic heterogeneity. It has been shown that nutrient limitations are a relevant trigger for this behaviour. Here we explore the dynamics of anabolic heterogeneity under nutrient replete conditions. We applied time-resolved stable isotope probing and nanoscale secondary ion mass spectrometry to quantify substrate assimilation by individual cells of Pseudomonas putida, P. stutzeri and Thauera aromatica. Acetate and benzoate at different concentrations were used as substrates. Anabolic heterogeneity was quantified by the cumulative differentiation tendency index. We observed two major, opposing trends of anabolic heterogeneity over time. Most often, microbial populations started as highly heterogeneous, with heterogeneity decreasing by various degrees over time. The second, less frequently observed trend, saw microbial populations starting at low or very low heterogeneity, and remaining largely stable over time. We explain these trends as an interplay of metabolic history (e.g. former growth substrate or other nutrient limitations) and metabolic fitness (i.e. the fine-tuning of metabolic pathways to process a defined growth substrate). Our results offer a new viewpoint on the intra-population functional diversification often encountered in the environment, and suggests that some microbial populations may be intrinsically heterogeneous.
Assuntos
Pseudomonas putida , Isótopos , Redes e Vias Metabólicas , Pseudomonas putida/genética , Espectrometria de Massa de Íon SecundárioRESUMO
In this article, we - the Bacterial Viruses Subcommittee and the Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) - summarise the results of our activities for the period March 2020 - March 2021. We report the division of the former Bacterial and Archaeal Viruses Subcommittee in two separate Subcommittees, welcome new members, a new Subcommittee Chair and Vice Chair, and give an overview of the new taxa that were proposed in 2020, approved by the Executive Committee and ratified by vote in 2021. In particular, a new realm, three orders, 15 families, 31 subfamilies, 734 genera and 1845 species were newly created or redefined (moved/promoted).
Assuntos
Vírus de Archaea/classificação , Bacteriófagos/classificação , Sociedades Científicas/organização & administração , Archaea/virologia , Bactérias/virologiaRESUMO
Chitosan is a polymer that is extensively used to prepare nanoparticles (NPs) with tailored properties for applications in many fields of human activities. Among them, targeted drug delivery, especially when cancer therapy is the main interest, is a major application of chitosan-based NPs. Due to its positive charges, chitosan is used to produce the core of the NPs or to cover NPs made from other types of polymers, both strategies aiming to protect the carried drug until NPs reach the target sites and to facilitate the uptake and drug delivery into these cells. A major challenge in the design of these chitosan-based NPs is the formation of a protein corona (PC) upon contact with biological fluids. The composition of the PC can, to some extent, be modulated depending on the size, shape, electrical charge and hydrophobic / hydrophilic characteristics of the NPs. According to the composition of the biological fluids that have to be crossed during the journey of the drug-loaded NPs towards the target cells, the surface of these particles can be changed by covering their core with various types of polymers or with functionalized polymers carrying some special molecules, that will preferentially adsorb some proteins in their PC. The PC's composition may change by continuous processes of adsorption and desorption, depending on the affinity of these proteins for the chemical structure of the surface of NPs. Beside these, in designing the targeted drug delivery NPs one can take into account their toxicity, initiation of an immune response, participation (enhancement or inhibition) in certain metabolic pathways or chemical processes like reactive oxygen species, type of endocytosis of target cells, and many others. There are cases in which these processes seem to require antagonistic properties of nanoparticles. Products that show good behavior in cell cultures may lead to poor in vivo results, when the composition of the formed PC is totally different. This paper reviews the physico-chemical properties, cellular uptake and drug delivery applications of chitosan-based nanoparticles, specifying the factors that contribute to the success of the targeted drug delivery. Furthermore, we highlight the role of the protein corona formed around the NP in its intercellular fate.
Assuntos
Quitosana/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Coroa de Proteína/química , Animais , Quitosana/farmacologia , Humanos , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Polímeros/química , Polímeros/farmacologiaRESUMO
Background and objectives: Erratic results have been published concerning the influence of the dietary supplement chitosan used as a complementary remedy to decrease the body weight of overweight and obese people. The published articles mention as secondary possible benefits of usage of chitosan the improvement of blood pressure and serum lipids status. We performed a meta-analysis evaluating body weight, body mass index, total cholesterol, high density lipoprotein cholesterol, low density lipoprotein cholesterol, triglycerides, systolic and diastolic blood pressure among overweight and obese patients. Materials and Methods: Searching MEDLINE, Cochrane up to December 2017 on clinical trials that have assessed the influence of chitosan used as a dietary supplement on overweight and obese patients. An additional study was identified in the References section of another meta-analysis. A total of 14 randomised control trials (RCT) were used to assess the effect on body weight, serum lipids and blood pressure. Results: The usage of chitosan as a dietary supplement up to 52 weeks seems to slightly reduce the body weight (-1.01 kg, 95% CI: -1.67 to -0.34). Considering the other parameters studied, the most significant improvement was observed in systolic and diastolic blood pressure: -2.68 mm Hg (95% CI: -4.19 to -1.18) and -2.14 mm Hg (95% CI: -4.14 to -0.14) in favour of chitosan versus a placebo. Conclusions: Based on the meta-analysis realized with 14 RCT we concluded that the usage of chitosan as a dietary supplement can lead to a slight short- and medium-term effect on weight loss and to the improvement of serum lipid profile and cardiovascular factors.
Assuntos
Anticolesterolemiantes/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Quitosana/uso terapêutico , Suplementos Nutricionais , Obesidade/dietoterapia , Redução de Peso/efeitos dos fármacos , Adolescente , Adulto , Idoso , Índice de Massa Corporal , Quitosana/farmacologia , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ensaios Clínicos Controlados Aleatórios como Assunto , Triglicerídeos/sangue , Adulto JovemRESUMO
Although fluorescence in situ hybridization (FISH) with specific ribosomal RNA (rRNA)-targeted oligonucleotides is a standard method to detect and identify microorganisms, the specific detection of genes in bacteria and archaea, for example by using geneFISH, requires complicated and lengthy (> 30 h) procedures. Here we report a much improved protocol, direct-geneFISH, which allows specific gene and rRNA detection within less than 6 h. For direct-geneFISH, catalyzed amplification reporter deposition (CARD) steps are removed and fluorochrome-labelled polynucleotide gene probes and rRNA-targeted oligonucleotide probes are hybridized simultaneously. The protocol allows quantification of gene copy numbers per cell and the signal of the directly labelled probes enables a subcellular localization of the rRNA and target gene. The detection efficiencies of direct-geneFISH were first evaluated on Escherichia coli carrying the target gene on a copy-control vector. We could show that gene copy numbers correlated to the geneFISH signal within the cells. The new protocol was then applied for the detection of the sulfate thiolhydrolase (soxB) genes in cells of the gammaproteobacterial clade SUP05 in Lake Rogoznica, Croatia. Cell and gene detection efficiencies by direct-geneFISH were statistically identical to those obtained with the original geneFISH, demonstrating the suitability of the simpler and faster protocol for environmental samples.
Assuntos
Escherichia coli/genética , Gammaproteobacteria/genética , Dosagem de Genes/genética , Hibridização in Situ Fluorescente/métodos , Sondas de Oligonucleotídeos/genética , RNA Ribossômico/genética , Croácia , Lagos/microbiologiaRESUMO
The discovery of deep-sea hydrothermal vents in 1977 revolutionized our understanding of the energy sources that fuel primary productivity on Earth. Hydrothermal vent ecosystems are dominated by animals that live in symbiosis with chemosynthetic bacteria. So far, only two energy sources have been shown to power chemosynthetic symbioses: reduced sulphur compounds and methane. Using metagenome sequencing, single-gene fluorescence in situ hybridization, immunohistochemistry, shipboard incubations and in situ mass spectrometry, we show here that the symbionts of the hydrothermal vent mussel Bathymodiolus from the Mid-Atlantic Ridge use hydrogen to power primary production. In addition, we show that the symbionts of Bathymodiolus mussels from Pacific vents have hupL, the key gene for hydrogen oxidation. Furthermore, the symbionts of other vent animals such as the tubeworm Riftia pachyptila and the shrimp Rimicaris exoculata also have hupL. We propose that the ability to use hydrogen as an energy source is widespread in hydrothermal vent symbioses, particularly at sites where hydrogen is abundant.
Assuntos
Bivalves/microbiologia , Ecossistema , Metabolismo Energético , Fontes Termais/química , Hidrogênio/metabolismo , Simbiose/fisiologia , Animais , Oceano Atlântico , Bivalves/efeitos dos fármacos , Bivalves/metabolismo , Relação Dose-Resposta a Droga , Sedimentos Geológicos/química , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Brânquias/microbiologia , Fontes Termais/microbiologia , Hidrogênio/análise , Hidrogênio/farmacologia , Hidrogenase/genética , Hidrogenase/metabolismo , Dados de Sequência Molecular , Oxirredução , Pressão Parcial , Água do Mar/química , Água do Mar/microbiologia , Sulfetos/metabolismo , Enxofre/metabolismo , Simbiose/efeitos dos fármacos , Simbiose/genéticaRESUMO
Previous studies have shown that children in the preschool period are fastidious imitators who copy models with such high levels of fidelity that task efficiency may be compromised. This over-imitative tendency, and the pervasive nature of it, has led to many explorations and theoretical interpretations of this behavior, including social, causal, and conventional explanations. In support of the conventional account, recent research has shown that children are more likely to over-imitate when the task is framed using conventional verbal cues than when it is framed using instrumental verbal cues. The aim of the current study was to determine whether 3- to 6-year-old children (N=185, mean age=60 months) would over-imitate when presented with instrumental and conventional verbal cues, which varied only minimally and were more directly comparable between instrumental and conventional contexts than those used in previous studies. In addition to varying the overall context, we also varied the instrumental prompt used such that the cues provided ranged in the extent to which they provided explicit instruction to omit the irrelevant actions. Counter to our predictions, and the high levels of over-imitation witnessed in previous studies, the older children frequently over-imitated irrespective of the context provided, whereas the youngest children over-imitated selectively, including the irrelevant actions only when the task was presented in a conventional frame. We propose that the age differences found following an instrumental presentation are a result of the youngest children being more open to the motivation of learning the causality of the task, whereas the older children were more strongly motivated to adopt a social convention.
Assuntos
Desenvolvimento Infantil/fisiologia , Sinais (Psicologia) , Comportamento Imitativo , Aprendizado Social/fisiologia , Criança , Pré-Escolar , Feminino , Humanos , MasculinoRESUMO
While taxonomy is an often underappreciated branch of science, it serves very important roles. Bacteriophage taxonomy has evolved from a discipline based mainly on morphology, characterized by the work of David Bradley and Hans-Wolfgang Ackermann, to the sequence-based approach that is taken today. The Bacterial Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) takes a holistic approach to classifying prokaryote viruses by measuring overall DNA and protein similarity and phylogeny before making decisions about the taxonomic position of a new virus. The huge number of complete genomes being deposited with the National Center for Biotechnology Information (NCBI) and other public databases has resulted in a reassessment of the taxonomy of many viruses, and the future will see the introduction of new viral families and higher orders.
Assuntos
Bacteriófagos , Vírus , Humanos , Bacteriófagos/genética , Vírus/genética , Filogenia , Bases de Dados Factuais , Previsões , Genoma ViralRESUMO
Introduction: This study aimed to investigate the impact of cognitive load, particularly its escalation during the execution of the same test, under varying vision conditions, on postural balance among adolescents with intellectual disability (ID). Methods: Twenty adolescents underwent balance assessments under different visual conditions (Open Eyes (OE), Closed Eyes (CE), Flash, Goggles, Visual Stimulation (VS)) and task settings (Single Task (ST), Dual Task (DT) without challenges, and DT with challenges). The cognitive test was assessed using Verbal Fluency (VF). Results and discussion: Significant effects were found for Task (p < 0.001, ηp2 = 0.85), indicating that CoP values significantly increased (p < 0.05) with the introduction of the DT. Dual Task Cost (DTC) demonstrated significant effects for Vision (p = 0.008, ηp2 = 0.62), with values varying significantly (p < 0.05) among different vision conditions, especially in CE and Flash conditions. Visual Dependency Quotient (VDQ) analyses revealed significant effects of condition (p < 0.001, ηp2 = 0.84), with significant changes observed in CE/OE and Flash/OE conditions (p < 0.05). Significant effects were observed for Cognitive performance in the Challenge condition (p < 0.001, ηp2 = 0.86), with decreased performance with cognitive task challenges, particularly in Flash and Goggles conditions (p < 0.05). In conclusion, cognitive tasks, especially challenging ones, and visual variations significantly impact postural balance in adolescents with ID.
RESUMO
Ecosystems subject to mantle degassing are of particular interest for understanding global biogeochemistry, as their microbiomes are shaped by prolonged exposure to high CO2 and have recently been suggested to be highly active. While the genetic diversity of bacteria and archaea in these deep biosphere systems have been studied extensively, little is known about how viruses impact these microbial communities. Here, we show that the viral community in a high-CO2 cold-water geyser (Wallender Born, Germany) undergoes substantial fluctuations over a period of 12 days, although the corresponding prokaryotic community remains stable, indicating a newly observed "infect to keep in check" strategy that maintains prokaryotic community structure. We characterized the viral community using metagenomics and metaproteomics, revealing 8 654 viral operational taxonomic units (vOTUs). CRISPR spacer-to-protospacer matching linked 278 vOTUs to 32 hosts, with many vOTUs sharing hosts from different families. High levels of viral structural proteins present in the metaproteome (several structurally annotated based on AlphaFold models) indicate active virion production at the time of sampling. Viral genomes expressed many proteins involved in DNA metabolism and manipulation, and encoded for auxiliary metabolic genes, which likely bolster phosphate and sulfur metabolism of their hosts. The active viral community encodes genes to facilitate acquisition and transformation of host nutrients, and appears to consist of many nutrient-demanding members, based on abundant virion proteins. These findings indicate viruses are inextricably linked to the biogeochemical cycling in this high-CO2 environment and substantially contribute to prokaryotic community stability in the deep biosphere hotspots.
RESUMO
Microbes drive the biogeochemical cycles that fuel planet Earth, and their viruses (phages) alter microbial population structure, genome repertoire, and metabolic capacity. However, our ability to understand and quantify phage-host interactions is technique-limited. Here, we introduce phageFISH - a markedly improved geneFISH protocol that increases gene detection efficiency from 40% to > 92% and is optimized for detection and visualization of intra- and extracellular phage DNA. The application of phageFISH to characterize infection dynamics in a marine podovirus-gammaproteobacterial host model system corroborated classical metrics (qPCR, plaque assay, FVIC, DAPI) and outperformed most of them to reveal new biology. PhageFISH detected both replicating and encapsidated (intracellular and extracellular) phage DNA, while simultaneously identifying and quantifying host cells during all stages of infection. Additionally, phageFISH allowed per-cell relative measurements of phage DNA, enabling single-cell documentation of infection status (e.g. early vs late stage infections). Further, it discriminated between two waves of infection, which no other measurement could due to population-averaged signals. Together, these findings richly characterize the infection dynamics of a novel model phage-host system, and debut phageFISH as a much-needed tool for studying phage-host interactions in the laboratory, with great promise for environmental surveys and lineage-specific population ecology of free phages.
Assuntos
Bacteriófagos/genética , Interações Hospedeiro-Patógeno , Espaço Intracelular/virologia , Podoviridae/fisiologia , Pseudoalteromonas/virologia , Virologia/métodos , Reprodutibilidade dos Testes , Água do Mar/microbiologia , Água do Mar/virologiaRESUMO
Recent years have seen major changes in the classification criteria and taxonomy of viruses. The current classification scheme, also called "megataxonomy of viruses", recognizes six different viral realms, defined based on the presence of viral hallmark genes (VHGs). Within the realms, viruses are classified into hierarchical taxons, ideally defined by the phylogeny of their shared genes. To enable the detection of shared genes, viruses have first to be clustered, and there is currently a need for tools to assist with virus clustering and classification. Here, VirClust is presented. It is a novel, reference-free tool capable of performing: (i) protein clustering, based on BLASTp and Hidden Markov Models (HMMs) similarities; (ii) hierarchical clustering of viruses based on intergenomic distances calculated from their shared protein content; (iii) identification of core proteins and (iv) annotation of viral proteins. VirClust has flexible parameters both for protein clustering and for splitting the viral genome tree into smaller genome clusters, corresponding to different taxonomic levels. Benchmarking on a phage dataset showed that the genome trees produced by VirClust match the current ICTV classification at family, sub-family and genus levels. VirClust is freely available, as a web-service and stand-alone tool.
Assuntos
Bacteriófagos , Vírus , Vírus/genética , Bacteriófagos/genética , Genes Virais , Genoma Viral , Filogenia , Análise por ConglomeradosRESUMO
Spatial and temporal distribution of lytic viruses in deep groundwater remains unexplored so far. Here, we tackle this gap of knowledge by studying viral infections of Altivir_1_MSI in biofilms dominated by the uncultivated host Candidatus Altiarchaeum hamiconexum sampled from deep anoxic groundwater over a period of four years. Using virus-targeted direct-geneFISH (virusFISH) whose detection efficiency for individual viral particles was 15%, we show a significant and steady increase of virus infections from 2019 to 2022. Based on fluorescence micrographs of individual biofilm flocks, we determined different stages of viral infections in biofilms for single sampling events, demonstrating the progression of infection of biofilms in deep groundwater. Biofilms associated with many host cells undergoing lysis showed a substantial accumulation of filamentous microbes around infected cells probably feeding off host cell debris. Using 16S rRNA gene sequencing across ten individual biofilm flocks from one sampling event, we determined that the associated bacterial community remains relatively constant and was dominated by sulfate-reducing members affiliated with Desulfobacterota. Given the stability of the virus-host interaction in these deep groundwater samples, we postulate that the uncultivated virus-host system described herein represents a suitable model system for studying deep biosphere virus-host interactions in future research endeavors.
Assuntos
Água Subterrânea , Vírus , Archaea/genética , RNA Ribossômico 16S/genética , Bactérias/genética , Biofilmes , Vírus/genéticaRESUMO
Considering the rising prevalence of smartphone usage among adolescents with intellectual disabilities and their frequent motor challenges, understanding its impact on their physical well-being is important. This study aims to investigate the impact of smartphone activities on postural balance in adolescents with intellectual disabilities. Two groups of adolescents participated in the study: an intellectual disability group (IDG) (n = 16) and atypical development group (TDG) (n = 12). Static postural balance, using a stabilometric platform on firm and foam surfaces, and dynamic balance, using the Timed Up-and-Go Test (TUGT), were performed under various conditions, such as playing a game, watching videos, video calls, and listening to music. The center of pressure (CoP) values significantly increased (p < 0.05) during all smartphone activities (except listening to music) compared to the control condition in both groups, with the IDG demonstrated a more pronounced increase (p < 0.05) during playing video games and video calls on the firm surface. TUGT scores significantly increased (p < 0.05) during smartphone activities, with greater changes observed in the IDG (p < 0.05), and significantly decreased (p < 0.01) during listening to music in both groups. Our study suggests that adolescents with intellectual disabilities need special tools and guidance to ensure their safety and well-being when using smartphones.
RESUMO
Despite important ecological roles posited for virocells (i.e., cells infected with viruses), studying individual cells in situ is technically challenging. We introduce here a novel correlative microscopic approach to study the ecophysiology of virocells. By conducting concerted virusFISH, 16S rRNA FISH, and scanning electron microscopy interrogations of uncultivated archaea, we linked morphologies of various altiarchaeal cells to corresponding phylogenetic signals and indigenous virus infections. While uninfected cells exhibited moderate separation between fluorescence signals of ribosomes and DNA, virocells displayed complete cellular segregation of chromosomal DNA from viral DNA, the latter co-localizing with host ribosome signals. A similar spatial separation was observed in dividing cells, with viral signals congregating near ribosomes at the septum. These observations suggest that replication of these uncultivated viruses occurs alongside host ribosomes, which are used to generate the required proteins for virion assembly. Heavily infected cells sometimes displayed virus-like particles attached to their surface, which agree with virus structures in cells observed via transmission electron microscopy. Consequently, this approach is the first to link genomes of uncultivated viruses to their respective structures and host cells. Our findings shed new light on the complex ecophysiology of archaeal virocells in deep subsurface biofilms and provide a solid framework for future in situ studies of virocells.
Assuntos
Archaea , Vírus , Archaea/genética , Filogenia , RNA Ribossômico 16S/genética , Vírus/genética , DNA Viral/genéticaRESUMO
The aim of this study was to identify the existence of some relationships between certain psychomotor behaviors, which we consider specific to swimming, and learning to execute the technique of some swimming styles (front crawl and backstroke). The study was carried out for 10 months and included 76 children (40 boys and 36 girls) aged between 6 and 9 years who practice recreational swimming in a city in Romania. Several tools were used: the Tapping test for manual dexterity, the Goodenough test for body schema, the Flamingo test for static balance, and the horizontal buoyancy test for body balance on the water. The results indicated better ratings on all psychomotor behaviors analyzed according to gender (in favor of girls compared to boys). The levels of all analyzed psychomotor behaviors have a direct relationship to the subjects' age. Also, we identified moderate positive correlations for manual dexterity (rs = 0.63 in the front crawl style; rs = 0.57 in the backstroke style) and strong correlations for body schema, static balance and buoyancy, coordination with the learning of the two swimming styles (r or rs between 0.77 and 0.85). In conclusion, psychomotor behaviors can be predictors for learning swimming styles.