RESUMO
We report on the biocatalytic activation of a self-assembling (unprotected) tripeptide to stabilize oil-in-water emulsions on-demand. This is achieved by the conversion of a phosphorylated precursor into a hydrogelator using alkaline phosphatase (AP) as the trigger. The rate of conversion, controlled by the amount of enzyme used, is shown to play a key role in dictating the morphology of the nanofibrous networks produced. When these amphiphilic tripeptides are used in biphasic mixtures, nanofibers are shown to self-assemble not only at the aqueous/organic interface but also throughout the surrounding buffer, thereby stabilizing the oil-in-water droplet dispersions. The use of enzymatic activation of tripeptide emulsions gives rise to enhanced control of the emulsification process because emulsions can be stabilized on-demand by simply adding AP. In addition, control over the emulsion stabilization can be achieved by taking advantage of the kinetics of dephosphorylation and consequent formation of different stabilizing nanofibrous networks at the interface and/or in the aqueous environment. This approach can be attractive for various cosmetic, food, or biomedical applications because both tunability of the tripeptide emulsion stability and on-demand stabilization of emulsions can be achieved.
RESUMO
We report on-demand formation of emulsions stabilised by interfacial nanoscale networks. These are formed through biocatalytic dephosphorylation and self-assembly of Fmoc(9-fluorenylmethoxycarbonyl)dipeptide amphiphiles in aqueous/organic mixtures. This is achieved by using alkaline phosphatase which transforms surfactant-like phosphorylated precursors into self-assembling aromatic peptide amphiphiles (Fmoc-tyrosine-leucine, Fmoc-YL) that form nanofibrous networks. In biphasic organic/aqueous systems, these networks form preferentially at the interface thus providing a means of emulsion stabilisation. We demonstrate on-demand emulsification by enzyme addition, even after storage of the biphasic mixture for several weeks. Experimental (Fluorescence, FTIR spectroscopy, fluorescence microscopy, electron microscopy, atomic force microscopy) and computational techniques (atomistic molecular dynamics) are used to characterise the interfacial self-assembly process.
Assuntos
Fosfatase Alcalina/metabolismo , Nanofibras/química , Fosfatase Alcalina/química , Dipeptídeos/química , Emulsões , Fluorenos/química , Simulação de Dinâmica Molecular , Conformação ProteicaRESUMO
The development of advanced facemasks stands out as a paramount priority in enhancing healthcare preparedness. In this work, different polypropylene non-woven fabrics (NWF) were characterised regarding their structural, physicochemical and comfort-related properties. The selected NWF for the intermediate layer was functionalised with zinc oxide nanoparticles (ZnO NPs) 0.3 and 1.2wt% using three different methods: electrospinning, dip-pad-dry and exhaustion. After the confirmation of ZnO NP content and distribution within the textile fibres by morphological and chemical analysis, the samples were evaluated regarding their antimicrobial properties. The functionalised fabrics obtained via dip-pad-dry unveiled the most promising data, with 0.017 ± 0.013wt% ZnO NPs being mostly located at the fibre's surface and capable of total eradication of Staphylococcus aureus and Escherichia coli colonies within the tested 24 h (ISO 22196 standard), as well as significantly contributing (**** p < 0.0001) to the growth inhibition of the bacteriophage MS2, a surrogate of the SARS-CoV-2 virus (ISO 18184 standard). A three-layered structure was assembled and thermoformed to obtain facemasks combining the previously chosen NWF, and its resulting antimicrobial capacity, filtration efficiency and breathability (NP EN ISO 149) were assessed. The developed three-layered and multiscaled fibrous structures with antimicrobial capacities hold immense potential as active individual protection facemasks.
RESUMO
Pressure injuries (PIs) are a major public health problem and can be used as quality-of-care indicators. An incipient development in the field of medical devices takes the form of Smart Health Textiles, which can possess innovative properties such as thermoregulation, sensing, and antibacterial control. This protocol aims to describe the process for the development of a new type of smart clothing for individuals with reduced mobility and/or who are bedridden in order to prevent PIs. This paper's main purpose is to present the eight phases of the project, each consisting of tasks in specific phases: (i) product and process requirements and specifications; (ii and iii) study of the fibrous structure technology, textiles, and design; (iv and v) investigation of the sensor technology with respect to pressure, temperature, humidity, and bioactive properties; (vi and vii) production layout and adaptations in the manufacturing process; (viii) clinical trial. This project will introduce a new structural system and design for smart clothing to prevent PIs. New materials and architectures will be studied that provide better pressure relief, thermo-physiological control of the cutaneous microclimate, and personalisation of care.
RESUMO
Smart textiles have become a promising area of research for heating applications. Coatings with nanomaterials allow the introduction of different functionalities, enabling doped textiles to be used in sensing and heating applications. These coatings were made on a piece of woven cotton fabric through screen printing, with a different number of layers. To prepare the paste, nanomaterials such as graphene nanoplatelets (GNPs) and multiwall carbon nanotubes (CNTs) were added to a polyurethane-based polymeric resin, in various concentrations. The electrical conductivity of the obtained samples was measured and the heat-dissipating capabilities assessed. The results showed that coatings have induced electrical conductivity and heating capabilities. The highest electrical conductivity of (9.39 ± 1.28 × 10-1 S/m) and (9.02 ± 6.62 × 10-2 S/m) was observed for 12% (w/v) GNPs and 5% (w/v) (CNTs + GNPs), respectively. The sample with 5% (w/v) (CNTs + GNPs) and 12% (w/v) GNPs exhibited a Joule effect when a voltage of 12 V was applied for 5 min, and a maximum temperature of 42.7 °C and 40.4 °C were achieved, respectively. It can be concluded that higher concentrations of GNPs can be replaced by adding CNTs, still achieving nearly the same performance. These coated textiles can potentially find applications in the area of heating, sensing, and biomedical applications.
RESUMO
Although the force/pressure applied onto a textile substrate through a uniaxial compression is constant and independent of the yarn direction, it should be noted that such mechanical action causes a geometric change in the substrate, which can be identified by the reduction in its lateral thickness. Therefore, the objective of this study was to investigate the influence of the fabric orientation on both knitted and woven pressure sensors, in order to generate knowledge for a better design process during textile piezoresistive sensor development. For this purpose, these distinct textile structures were doped with different concentrations of graphene nanoplatelets (GNPs), using the screen-printing technique. The chemical and physical properties of these screen-printed fabrics were analysed using Field Emission Scanning Electron Microscopy, Ground State Diffuse Reflectance and Raman Spectroscopy. Samples were subjected to tests determining linear electrical surface resistance and piezoresistive behaviour. In the results, a higher presence of conductive material was found in woven structures. For the doped samples, the electrical resistance varied between 105 Ω and 101 Ω, for the GNPs' percentage increase. The lowest resistance value was observed for the woven fabric with 15% GNPs (3.67 ± 8.17 × 101 Ω). The samples showed different electrical behaviour according to the fabric orientation. Overall, greater sensitivity in the longitudinal direction and a lower coefficient of variation CV% of the measurement was identified in the transversal direction, coursewise for knitted and weftwise for woven fabrics. The woven fabric doped with 5% GNPs assembled in the weftwise direction was shown to be the most indicated for a piezoresistive sensor, due to its most uniform response and most accurate measure of mechanical stress.
RESUMO
The rising threats to worldwide security (affecting the military, first responders, and civilians) urge us to develop efficient and versatile technological solutions to protect human beings. Soldiers, medical personnel, firefighters, and law enforcement officers should be adequately protected, so that their exposure to biological warfare agents (BWAs) is minimized, and infectious microorganisms cannot be spread so easily. Current bioprotective military garments include multilayered fabrics integrating activated carbon as a sorptive agent and a separate filtrating layer for passive protection. However, secondary contaminants emerge following their accumulation within the carbon filler. The clothing becomes too heavy and warm to wear, not breathable even, preventing the wearer from working for extended hours. Hence, a strong need exists to select and/or create selectively permeable layered fibrous structures with bioactive agents that offer an efficient filtering capability and biocidal skills, ensuring lightweightness, comfort, and multifunctionality. This review aims to showcase the main possibilities and trends of bioprotective textiles, focusing on metal-organic frameworks (MOFs), inorganic nanoparticles (e.g., ZnO-based), and organic players such as chitosan (CS)-based small-scale particles and plant-derived compounds as bioactive agents. The textile itself should be further evaluated as the foundation for the barrier effect and in terms of comfort. The outputs of a thorough, standardized characterization should dictate the best elements for each approach.
RESUMO
Silk fibroin is a biobased material with excellent biocompatibility and mechanical properties, but its use in bioelectronics is hampered by the difficult dissolution and low intrinsic conductivity. Some ionic liquids are known to dissolve fibroin but removed after fibroin processing. However, ionic liquids and fibroin can cooperatively give rise to functional materials, and there are untapped opportunities in this combination. The dissolution of fibroin, followed by gelation, in designer ionic liquids from the imidazolium chloride family with varied alkyl chain lengths (2-10 carbons) is shown here. The alkyl chain length of the anion has a large impact on fibroin secondary structure which adopts unconventional arrangements, yielding robust gels with distinct hierarchical organization. Furthermore, and due to their remarkable air-stability and ionic conductivity, fibroin ionogels are exploited as active electrical gas sensors in an electronic nose revealing the unravelled possibilities of fibroin in soft and flexible electronics.
RESUMO
We demonstrate phage-display screening on self-assembled ligands that enables the identification of oligopeptides that selectively bind dynamic supramolecular targets over their unassembled counterparts. The concept is demonstrated through panning of a phage-display oligopeptide library against supramolecular tyrosine-phosphate ligands using 9-fluorenylmethoxycarbonyl-phenylalanine-tyrosine-phosphate (Fmoc-FpY) micellar aggregates as targets. The 14 selected peptides showed no sequence consensus but were enriched in cationic and proline residues. The lead peptide, KVYFSIPWRVPM-NH2 (P7) was found to bind to the Fmoc-FpY ligand exclusively in its self-assembled state with K D = 74 ± 3 µM. Circular dichroism, NMR and molecular dynamics simulations revealed that the peptide interacts with Fmoc-FpY through the KVYF terminus and this binding event disrupts the assembled structure. In absence of the target micellar aggregate, P7 was further found to dynamically alternate between multiple conformations, with a preferred hairpin-like conformation that was shown to contribute to supramolecular ligand binding. Three identified phages presented appreciable binding, and two showed to catalyze the hydrolysis of a model para-nitro phenol phosphate substrate, with P7 demonstrating conformation-dependent activity with a modest k cat/K M = 4 ± 0.3 × 10-4 M-1 s-1.