Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(17): 9909-9929, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36107774

RESUMO

DNA lesions in S phase threaten genome stability. The DNA damage tolerance (DDT) pathways overcome these obstacles and allow completion of DNA synthesis by the use of specialised translesion (TLS) DNA polymerases or through recombination-related processes. However, how these mechanisms coordinate with each other and with bulk replication remains elusive. To address these issues, we monitored the variation of replication intermediate architecture in response to ultraviolet irradiation using transmission electron microscopy. We show that the TLS polymerase η, able to accurately bypass the major UV lesion and mutated in the skin cancer-prone xeroderma pigmentosum variant (XPV) syndrome, acts at the replication fork to resolve uncoupling and prevent post-replicative gap accumulation. Repriming occurs as a compensatory mechanism when this on-the-fly mechanism cannot operate, and is therefore predominant in XPV cells. Interestingly, our data support a recombination-independent function of RAD51 at the replication fork to sustain repriming. Finally, we provide evidence for the post-replicative commitment of recombination in gap repair and for pioneering observations of in vivo recombination intermediates. Altogether, we propose a chronology of UV damage tolerance in human cells that highlights the key role of polη in shaping this response and ensuring the continuity of DNA synthesis.


Assuntos
Reparo do DNA , Xeroderma Pigmentoso , Dano ao DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Raios Ultravioleta , Xeroderma Pigmentoso/genética
2.
Biol Methods Protoc ; 5(1): bpaa012, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32913896

RESUMO

DNA intermediate structures are formed in all major pathways of DNA metabolism. Transmission electron microscopy (TEM) is a tool of choice to study their choreography and has led to major advances in the understanding of these mechanisms, particularly those of homologous recombination (HR) and replication. In this article, we describe specific TEM procedures dedicated to the structural characterization of DNA intermediates formed during these processes. These particular DNA species contain single-stranded DNA regions and/or branched structures, which require controlling both the DNA molecules spreading and their staining for subsequent visualization using dark-field imaging mode. Combining BAC (benzyl dimethyl alkyl ammonium chloride) film hyperphase with positive staining and dark-field TEM allows characterizing synthetic DNA substrates, joint molecules formed during not only in vitro assays mimicking HR, but also in vivo DNA intermediates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA