Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Biol Chem ; 300(4): 107165, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484801

RESUMO

ClpG is a novel autonomous disaggregase found in Pseudomonas aeruginosa that confers resistance to lethal heat stress. The mechanism by which ClpG specifically targets protein aggregates for disaggregation is unknown. In their recent work published in JBC, Katikaridis et al. (2023) identify an avidity-based mechanism by which four or more ClpG subunits, through specific N-terminal hydrophobic residues located on an exposed ß-sheet loop, interact with multiple hydrophobic patches on an aggregated protein substrate. This study establishes a model for substrate binding to a prokaryotic disaggregase that should inform further investigations into other autonomous disaggregases.


Assuntos
Proteínas de Bactérias , Ligação Proteica , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Agregados Proteicos , Interações Hidrofóbicas e Hidrofílicas , Endopeptidase Clp/metabolismo , Endopeptidase Clp/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/química
2.
J Biol Chem ; 290(18): 11443-54, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25829494

RESUMO

Hyperthermia is a proteotoxic stress that is lethal when exposure is extreme but also cytoprotective in that sublethal exposure leads to the synthesis of heat shock proteins, including HSP70, which are able to inhibit stress-induced apoptosis. CDK5 is an atypical cyclin-dependent kinase family member that regulates many cellular functions including motility and survival. Here we show that exposure of a human lymphoid cell line to hyperthermia causes CDK5 insolubilization and loss of tyrosine-15 phosphorylation, both of which were prevented in cells overexpressing HSP70. Inhibition of CDK5 activity with roscovitine-sensitized cells to heat induced apoptosis indicating a protective role for CDK5 in inhibiting heat-induced apoptosis. Both roscovitine and heat shock treatment caused increased accumulation of NOXA a pro-apoptotic BH3-only member of the BCL2 family. The increased abundance of NOXA by CDK5 inhibition was not a result of changes in NOXA protein turnover. Instead, CDK5 inhibition increased NOXA mRNA and protein levels by decreasing the expression of miR-23a, whereas overexpressing the CDK5 activator p35 attenuated both of these effects on NOXA and miR-23a expression. Lastly, overexpression of miR-23a prevented apoptosis under conditions in which CDK5 activity was inhibited. These results demonstrate that CDK5 activity provides resistance to heat-induced apoptosis through the expression of miR-23a and subsequent suppression of NOXA synthesis. Additionally, they indicate that hyperthermia induces apoptosis through the insolubilization and inhibition of CDK5 activity.


Assuntos
Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Resposta ao Choque Térmico , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose/genética , Sobrevivência Celular , Regulação da Expressão Gênica/genética , Proteínas de Choque Térmico HSP70/metabolismo , Células HeLa , Humanos
3.
J Neurochem ; 137(4): 630-46, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26871972

RESUMO

Choline acetyltransferase (ChAT) is essential for cholinergic neuron function as it mediates synthesis of the neurotransmitter acetylcholine. ChAT mutations have been linked to the neuromuscular disorder congenital myasthenic syndrome (CMS). One CMS-related ChAT mutation, V18M, reduces enzyme activity and cellular protein levels, and is positioned within a highly conserved proline-rich motif with the sequence 14 PKLPVPP20 . We demonstrate that N-terminal truncation that includes this proline-rich motif, as well as mutation of prolines-17/19 together to alanine (P17A/P19A), dramatically reduces ChAT steady-state protein levels and cellular activity when expressed in cholinergic SN56 neural cells. The in vitro activity of bacterially expressed recombinant P17A/P19A-ChAT is also reduced, although this is not caused by changes in protein secondary structure or thermal stability. Treatment of SN56 cells with the proteasome inhibitor MG132 increases cellular P17A/P19A-ChAT steady-state protein levels, and by immunoprecipitation we found that ChAT is ubiquitinated and that polyubiquitination of P17A/P19A-ChAT is increased compared to wild-type (WT) ChAT. Using a novel fluorescent-biorthogonal pulse-chase protocol in SN56 cells, we determined that the protein half-life of P17A/P19A-ChAT (2.2 h) is substantially reduced compared to WT-ChAT (19.7 h). Lastly, we show that two CMS-related ChAT mutants (V18M and A513T) have enhanced ubiquitination, and that treatment with MG132 can partially restore both the steady-state protein levels as well as cellular activity of some CMS-mutant ChAT. These results identify a novel mechanism for regulation of ChAT through the ubiquitin-proteasome system that is influenced by the conserved N-terminal proline-rich motif of ChAT and may be implicated in CMS pathology. Choline acetyltransferase (ChAT) synthesizes acetylcholine in cholinergic neurons. In this study we find that steady-state protein levels of human 69-kDa ChAT are regulated by the ubiquitin-proteasome system. Mutation of a highly conserved N-terminal proline-rich motif in human 69-kDa ChAT reduces both cellular ChAT protein levels, through enhanced ubiquitination and proteasomal degradation, and enzyme activity. Ubiquitination of catalytically deficient congenital myasthenic syndrome (CMS)-mutant ChAT is increased in cells, and importantly proteasome inhibition partially restores steady-state protein levels as well as cellular activity of some CMS-mutant ChAT proteins.


Assuntos
Colina O-Acetiltransferase/metabolismo , Mutação/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitinação/fisiologia , Animais , Catálise , Células Cultivadas , Colina O-Acetiltransferase/genética , Neurônios Colinérgicos/metabolismo , Humanos , Camundongos , Complexo de Endopeptidases do Proteassoma/genética
4.
Front Cell Dev Biol ; 9: 722560, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557490

RESUMO

Assessing the stability and degradation of proteins is central to the study of cellular biological processes. Here, we describe a novel pulse-chase method to determine the half-life of cellular proteins that overcomes the limitations of other commonly used approaches. This method takes advantage of pulse-labeling of nascent proteins in living cells with the bioorthogonal amino acid L-azidohomoalanine (AHA) that is compatible with click chemistry-based modifications. We validate this method in both mammalian and yeast cells by assessing both over-expressed and endogenous proteins using various fluorescent and chemiluminescent click chemistry-compatible probes. Importantly, while cellular stress responses are induced to a limited extent following live-cell AHA pulse-labeling, we also show that this response does not result in changes in cell viability and growth. Moreover, this method is not compromised by the cytotoxicity evident in other commonly used protein half-life measurement methods and it does not require the use of radioactive amino acids. This new method thus presents a versatile, customizable, and valuable addition to the toolbox available to cell biologists to determine the stability of cellular proteins.

5.
Front Mol Neurosci ; 10: 415, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29311808

RESUMO

Choline acetyltransferase (ChAT) synthesizes the neurotransmitter acetylcholine in cholinergic neurons, and mutations of this enzyme are linked to the neuromuscular disorder congenital myasthenic syndrome (CMS). One CMS-related mutation, V18M, reduces ChAT enzyme activity and cellular protein levels, and is located within a highly-conserved N-terminal proline-rich motif at residues 14PKLPVPP20. We showed previously that disruption of this proline-rich motif by either proline-to-alanine mutation (P17A/P19A) or mutation of residue Val18 (V18M) enhances ubiquitination and degradation of these mutant ChAT proteins expressed in cholinergic SN56 cells by an unknown mechanism. In this study, using proximity-dependent biotin identification (BioID), co-immunoprecipitation and in situ proximity-ligation assay (PLA), we identified the heat shock proteins (HSPs) HSC/HSP70 and HSP90 as novel ChAT protein-interactors. These molecular chaperones are well-known for promoting the folding and stabilization of cellular proteins. Thus, we found that inhibition of HSPs by treatment of cells with either the HSC/HSP70 inhibitors 2-phenylethynesulfonamide (PES) or VER-155008, or the HSP90 inhibitor 17-AAG reduced cellular ChAT activity and solubility, and enhanced the ubiquitination and proteasome-dependent loss of ChAT protein. Importantly, the effects of HSP inhibition were greater for mutant ChAT proteins (P17A/P19A-ChAT and CMS-related V18M- and A513T-ChAT) compared to wild-type ChAT. HSPs can promote ubiquitination and degradation of terminally misfolded proteins through cooperative interaction with the E3 ubiquitin ligase CHIP/Stub1, and while we show that ChAT interacts with CHIP in situ, siRNA-mediated knock-down of CHIP had no effect on either wild-type or mutant ChAT protein levels. However, inhibition of the endoplasmic reticulum (ER)- and HSP-associated co-chaperone p97/VCP prevented degradation of ubiquitinated ChAT. Together, these results identify novel mechanisms for the functional regulation of wild-type and CMS-related mutant ChAT by pro-stabilizing HSPs and the pro-degradative co-chaperone p97/VCP that may have broader implications for ChAT function during cellular stress and disease.

6.
Sci Rep ; 6: 23914, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27052102

RESUMO

The M-transcript of human choline acetyltransferase (ChAT) produces an 82-kDa protein (82-kDa ChAT) that concentrates in nuclei of cholinergic neurons. We assessed the effects of acute exposure to oligomeric amyloid-ß1-42 (Aß1-42) on 82-kDa ChAT disposition in SH-SY5Y neural cells, finding that acute exposure to Aß1-42 results in increased association of 82-kDa ChAT with chromatin and formation of 82-kDa ChAT aggregates in nuclei. When measured by chromatin immunoprecipitation with next-generation sequencing (ChIP-seq), we identified that Aß1-42-exposure increases 82-kDa ChAT association with gene promoters and introns. The Aß1-42-induced 82-kDa ChAT aggregates co-localize with special AT-rich binding protein 1 (SATB1), which anchors DNA to scaffolding/matrix attachment regions (S/MARs). SATB1 had a similar genomic association as 82-kDa ChAT, with both proteins associating with synapse and cell stress genes. After Aß1-42 -exposure, both SATB1 and 82-kDa ChAT are enriched at the same S/MAR on the APP gene, with 82-kDa ChAT expression attenuating an increase in an isoform-specific APP mRNA transcript. Finally, 82-kDa ChAT and SATB1 have patterned genomic association at regions enriched with S/MAR binding motifs. These results demonstrate that 82-kDa ChAT and SATB1 play critical roles in the response of neural cells to acute Aß-exposure.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Colina O-Acetiltransferase/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Regiões de Interação com a Matriz/efeitos dos fármacos , Neurônios/citologia , Precursor de Proteína beta-Amiloide/genética , Linhagem Celular , Núcleo Celular/metabolismo , Imunoprecipitação da Cromatina , Epigênese Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Íntrons/efeitos dos fármacos , Peso Molecular , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA