Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Curr Opin Cell Biol ; 8(6): 767-72, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8939669

RESUMO

In the past year, several new crystal structures have provided exciting insights into the conformational changes underlying the regulation of cyclin-dependent kinases. We now understand the structural basis of many of the mechanisms by which cyclin-dependent kinases are regulated, including activation by cyclin binding and phosphorylation, inhibition by the inhibitor p27, and binding by the CKS proteins.


Assuntos
Células/enzimologia , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/metabolismo , Divisão Celular/fisiologia , Células/citologia , Fosforilação , Conformação Proteica
3.
Curr Opin Cell Biol ; 12(6): 658-65, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11063929

RESUMO

Nuclear events of mitosis are initiated when the protein kinase cyclin-B1-Cdk1 is translocated into the nucleus during prophase. Recent work has unveiled many of the mechanisms that govern the localization of cyclin-B1-Cdk1 and its regulator Cdc25C. Phosphorylation-dependent changes in the rate of nuclear import and export of these proteins help to control the onset of mitosis both in normal cells and in cells delayed before mitosis by DNA damage.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclina B/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Líquido Intracelular/metabolismo , Mitose/fisiologia , Fosfatases cdc25/metabolismo , Animais , Núcleo Celular/metabolismo , Ciclina B1 , Dano ao DNA/fisiologia , Replicação do DNA/fisiologia , Humanos , Prófase/fisiologia , Transporte Proteico/fisiologia , Xenopus
4.
Nat Cell Biol ; 1(2): E47-53, 1999 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10559897

RESUMO

The events of late mitosis, from sister-chromatid separation to cytokinesis, are governed by the anaphase-promoting complex (APC), a multisubunit assembly that triggers the ubiquitin-dependent proteloysis of key regulatory proteins. An intricate regulatory network governs APC activity and helps to ensure that late mitotic events are properly timed and coordinated.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Mitose/fisiologia , Proteínas de Saccharomyces cerevisiae , Anáfase/fisiologia , Animais , Proteínas Cdc20 , Proteínas Cdh1 , Divisão Celular , Proteínas Fúngicas/metabolismo , Modelos Biológicos , Leveduras/citologia , Leveduras/genética , Leveduras/fisiologia
5.
J Cell Biol ; 134(4): 963-70, 1996 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-8769420

RESUMO

The activity of the mitosis-promoting kinase CDC2-cyclin B is normally suppressed in S phase and G2 by inhibitory phosphorylation at Thr14 and Tyr15. This work explores the possibility that these phosphorylations are responsible for the G2 arrest that occurs in human cells after DNA damage. HeLa cell lines were established in which CDC2AF, a mutant that cannot be phosphorylated at Thr14 and Tyr15, was expressed from a tetracycline-repressible promoter. Expression of CDC2AF did not induce mitotic events in cells arrested at the beginning of S phase with DNA synthesis inhibitors, but induced low levels of premature chromatin condensation in cells progressing through S phase and G2. Expression of CDC2AF greatly reduced the G2 delay that resulted when cells were X-irradiated in S phase. However, a significant G2 delay was still observed and was accompanied by high CDC2-associated kinase activity. Expression of wild-type CDC2, or the related kinase CDK2AF, had no effect on the radiation-induced delay. Thus, inhibitory phosphorylation of CDC2, as well as additional undefined mechanisms, delay mitosis after DNA damage.


Assuntos
Proteína Quinase CDC2/metabolismo , Quinases relacionadas a CDC2 e CDC28 , Ciclina B , Dano ao DNA/fisiologia , Fase G2/fisiologia , Proteína Quinase CDC2/biossíntese , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/fisiologia , Ciclina B1 , Quinase 2 Dependente de Ciclina , Quinases Ciclina-Dependentes/biossíntese , Ciclinas/metabolismo , Repressão Enzimática/efeitos dos fármacos , Fase G2/efeitos da radiação , Células HeLa , Humanos , Mitose/fisiologia , Mutação , Fosforilação , Proteínas Serina-Treonina Quinases/biossíntese , Inibidores da Síntese de Proteínas/farmacologia , Proteínas Recombinantes de Fusão/biossíntese , Fase S/fisiologia , Fase S/efeitos da radiação , Tetraciclina/farmacologia
6.
J Cell Biol ; 141(4): 875-85, 1998 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-9585407

RESUMO

Mitosis in human cells is initiated by the protein kinase Cdc2-cyclin B1, which is activated at the end of G2 by dephosphorylation of two inhibitory residues, Thr14 and Tyr15. The G2 arrest that occurs after DNA damage is due in part to stabilization of phosphorylation at these sites. We explored the possibility that entry into mitosis is also regulated by the subcellular location of Cdc2-cyclin B1, which is suddenly imported into the nucleus at the end of G2. We measured the timing of mitosis in HeLa cells expressing a constitutively nuclear cyclin B1 mutant. Parallel studies were performed with cells expressing Cdc2AF, a Cdc2 mutant that cannot be phosphorylated at inhibitory sites. Whereas nuclear cyclin B1 and Cdc2AF each had little effect under normal growth conditions, together they induced a striking premature mitotic phenotype. Nuclear targeting of cyclin B1 was particularly effective in cells arrested in G2 by DNA damage, where it greatly reduced the damage-induced G2 arrest. Expression of nuclear cyclin B1 and Cdc2AF also resulted in significant defects in the exit from mitosis. Thus, nuclear targeting of cyclin B1 and dephosphorylation of Cdc2 both contribute to the control of mitotic entry and exit in human cells.


Assuntos
Proteína Quinase CDC2/metabolismo , Ciclo Celular/fisiologia , Núcleo Celular/metabolismo , Ciclina B/metabolismo , Dano ao DNA , Mitose/fisiologia , Adenoviridae , Sequência de Aminoácidos , Proteína Quinase CDC2/biossíntese , Ciclina B/biossíntese , Ciclina B1 , Epitopos , Fase G1 , Fase G2 , Células HeLa , Humanos , Cinética , Fosforilação , Proteínas Proto-Oncogênicas c-myc/biossíntese , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/metabolismo , Fase S , Fatores de Tempo , Transfecção
7.
J Cell Biol ; 118(2): 321-33, 1992 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-1378446

RESUMO

We have examined the subcellular localization of p60c-src in mammalian fibroblasts. Analysis of indirect immunofluorescence by three-dimensional optical sectioning microscopy revealed a granular cytoplasmic staining that co-localized with the microtubule organizing center. Immunofluorescence experiments with antibodies against a number of membrane markers demonstrated a striking co-localization between p60c-src and the cation-dependent mannose-6-phosphate receptor (CI-MPR), a marker that identifies endosomes. Both p60c-src and the CI-MPR were found to cluster at the spindle poles throughout mitosis. In addition, treatment of interphase and mitotic cells with brefeldin A resulted in a clustering of p60c-src and CI-MPR at a peri-centriolar position. Biochemical fractionation of cellular membranes showed that a major proportion of p60c-src co-enriched with endocytic membranes. Treatment of membranes containing HRP to alter their apparent density also altered the density of p60c-src-containing membranes. Similar density shift experiments with total cellular membranes revealed that the majority of membrane-associated p60c-src in the cell is associated with endosomes, while very little is associated with plasma membranes. These results support a role for p60c-src in the regulation of endosomal membranes and protein trafficking.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Endocitose , Membranas Intracelulares/metabolismo , Microtúbulos/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Animais , Linhagem Celular Transformada , Grânulos Citoplasmáticos/ultraestrutura , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Imunofluorescência , Membranas Intracelulares/ultraestrutura , Microtúbulos/ultraestrutura , Mitose , Proteínas Proto-Oncogênicas pp60(c-src)/análise , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Ratos , Transfecção
8.
Science ; 266(5189): 1388-91, 1994 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-7973730

RESUMO

The events of the eukaryotic cell cycle are governed by cyclin-dependent kinases (cdk's), whose activation requires association with cyclin regulatory subunits expressed at specific cell cycle stages. In the budding yeast Saccharomyces cerevisiae, the cell cycle is thought to be controlled by a single cdk, CDC28. Passage through the G1 phase of the cell cycle is regulated by complexes of CDC28 and G1 cyclins (CLN1, CLN2, and CLN3). A putative G1 cyclin, HCS26, has recently been identified. In a/alpha diploid cells lacking CLN1 and CLN2, HCS26 is required for passage through G1. HCS26 does not associate with CDC28, but instead associates with PHO85, a closely related protein kinase. Thus, budding yeast, like higher eukaryotes, use multiple cdk's in the regulation of cell cycle progression.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Proteínas Fúngicas/metabolismo , Fase G1 , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/citologia , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Dados de Sequência Molecular , Saccharomyces cerevisiae/genética
9.
Science ; 273(5282): 1714-7, 1996 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-8781234

RESUMO

Progress through the cell cycle is governed by the cyclin-dependent kinases (CDKs), the activation of which requires phosphorylation by the CDK-activating kinase (CAK). In vertebrates, CAK is a trimeric enzyme containing CDK7, cyclin H, and MAT1. CAK from the budding yeast Saccharomyces cerevisiae was identified as an unusual 44-kilodalton protein kinase, Cak1, that is only distantly related to CDKs. Cak1 accounted for most CAK activity in yeast cell lysates, and its activity was constant throughout the cell cycle. The CAK1 gene was essential for cell viability. Thus, the major CAK in S. cerevisiae is distinct from the vertebrate enzyme, suggesting that budding yeast and vertebrates may have evolved different mechanisms of CDK activation.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Quinase 2 Dependente de Ciclina , Quinases Ciclina-Dependentes/metabolismo , Ativação Enzimática , Deleção de Genes , Genes Fúngicos , Humanos , Dados de Sequência Molecular , Peso Molecular , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/isolamento & purificação , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Quinase Ativadora de Quinase Dependente de Ciclina
10.
Science ; 257(5077): 1689-94, 1992 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-1388288

RESUMO

Human cyclin E, originally identified on the basis of its ability to function as a G1 cyclin in budding yeast, associated with a cell cycle-regulated protein kinase in human cells. The cyclin E-associated kinase activity peaked during G1, before the appearance of cyclin A, and was diminished during exit from the cell cycle after differentiation or serum withdrawal. The major cyclin E-associated kinase in human cells was Cdk2 (cyclin-dependent kinase 2). The abundance of the cyclin E protein and the cyclin E-Cdk2 complex was maximal in G1 cells. These results provide further evidence that in all eukaryotes assembly of a cyclin-Cdk complex is an important step in the biochemical pathway that controls cell proliferation during G1.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Quinases Ciclina-Dependentes , Ciclinas/metabolismo , Fase G1/fisiologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Animais , Linfócitos B/metabolismo , Linhagem Celular , Quinase 2 Dependente de Ciclina , Citometria de Fluxo , Humanos , Immunoblotting , Técnicas de Imunoadsorção , Ratos
11.
Science ; 214(4525): 1125-9, 1981 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-6272395

RESUMO

A DNA sequence coding for the immunogenic capsid protein VP3 of foot-and-mouth disease virus A12, prepared from the virion RNA, was ligated to a plasmid designed to express a chimeric protein from the Escherichia coli tryptophan promoter-operator system. When Escherichia coli transformed with this plasmid was grown in tryptophan-depleted media, approximately 17 percent of the total cellular protein was found to be an insoluble and stable chimeric protein. The purified chimeric protein competed equally on a molar basis with VP3 for specific antibodies to foot-and-mouth disease virus. When inoculated into six cattle and two swine, this protein elicited high levels of neutralizing antibody and protection against challenge with foot-and-mouth disease virus.


Assuntos
Doenças dos Bovinos/prevenção & controle , Clonagem Molecular , Febre Aftosa/prevenção & controle , Doenças dos Suínos/prevenção & controle , Vacinas , Proteínas Virais/uso terapêutico , Sequência de Aminoácidos , Animais , Formação de Anticorpos , Sequência de Bases , Bovinos , Enzimas de Restrição do DNA , DNA Recombinante/metabolismo , Imunidade Celular , Biossíntese de Proteínas , Suínos , Transcrição Gênica , Proteínas Virais/genética
12.
Science ; 281(5376): 533-8, 1998 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-9677190

RESUMO

Selective protein kinase inhibitors were developed on the basis of the unexpected binding mode of 2,6,9-trisubstituted purines to the adenosine triphosphate-binding site of the human cyclin-dependent kinase 2 (CDK2). By iterating chemical library synthesis and biological screening, potent inhibitors of the human CDK2-cyclin A kinase complex and of Saccharomyces cerevisiae Cdc28p were identified. The structural basis for the binding affinity and selectivity was determined by analysis of a three-dimensional crystal structure of a CDK2-inhibitor complex. The cellular effects of these compounds were characterized in mammalian cells and yeast. In the latter case the effects were characterized on a genome-wide scale by monitoring changes in messenger RNA levels in treated cells with high-density oligonucleotide probe arrays. Purine libraries could provide useful tools for analyzing a variety of signaling and regulatory pathways and may lead to the development of new therapeutics.


Assuntos
Adenina/análogos & derivados , Quinases relacionadas a CDC2 e CDC28 , Quinases Ciclina-Dependentes/antagonistas & inibidores , Purinas/farmacologia , Adenina/química , Adenina/metabolismo , Adenina/farmacologia , Sítios de Ligação , Proteína Quinase CDC28 de Saccharomyces cerevisiae/antagonistas & inibidores , Divisão Celular/efeitos dos fármacos , Cristalografia por Raios X , Ciclina A/metabolismo , Quinase 2 Dependente de Ciclina , Avaliação Pré-Clínica de Medicamentos , Flavonoides/química , Flavonoides/metabolismo , Flavonoides/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Fúngicos , Humanos , Ligação de Hidrogênio , Sondas de Oligonucleotídeos , Fosfatos/metabolismo , Piperidinas/química , Piperidinas/metabolismo , Piperidinas/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Purinas/síntese química , Purinas/química , Purinas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade , Transcrição Gênica/efeitos dos fármacos , Células Tumorais Cultivadas
13.
Curr Opin Genet Dev ; 2(1): 33-7, 1992 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-1385997

RESUMO

Recent studies of cell cycle control suggest that cyclin-dependent protein kinases play a central role in the cell's commitment to a new division cycle in late G1. The regulation of these kinases in normal and neoplastic growth is becoming clear.


Assuntos
Ciclo Celular/fisiologia , Ciclinas/fisiologia , Proteínas Oncogênicas/fisiologia , Animais , Humanos , Neoplasias/fisiopatologia
14.
Curr Biol ; 10(10): 615-8, 2000 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-10837230

RESUMO

Inactivation of mitotic cyclin-dependent kinases (Cdks) is required for cells to exit mitosis [1] [2]. In the budding yeast Saccharomyces cerevisiae, Cdk inactivation is triggered by the phosphatase Cdc14, which is activated by a complex network of regulatory proteins that includes the protein kinase Cdc15 [3] [4] [5] [6]. Here we show that the ability of Cdc15 to promote mitotic exit is inhibited by phosphorylation. Cdc15 is phosphorylated in vivo at multiple Cdk-consensus sites during most of the cell cycle, but is transiently dephosphorylated in late mitosis. Although phosphorylation appears to have no effect on Cdc15 kinase activity, a non-phosphorylatable mutant of Cdc15 is a more potent stimulator of mitotic exit than wild-type Cdc15, indicating that phosphorylation inhibits Cdc15 function in vivo. Interestingly, inhibitory phosphorylation of Cdc15 is removed by the phosphatase Cdc14 in vitro, and overproduction of Cdc14 leads to Cdc15 dephosphorylation in vivo. Thus, Cdc15 serves both as an activator and substrate of Cdc14. Although this scheme raises the possibility that positive feedback promotes Cdc14 activation, we present evidence that such feedback is not essential for Cdc14 activation in vivo. Instead, Cdc15 dephosphorylation may promote some additional function of Cdc15 that is independent of its effects on Cdc14 activation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Mitose/fisiologia , Proteínas Tirosina Fosfatases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ligação ao GTP/genética , Regulação Fúngica da Expressão Gênica , Fosforilação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética
15.
Curr Biol ; 9(5): 227-36, 1999 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-10074450

RESUMO

BACKGROUND: Exit from mitosis requires inactivation of mitotic cyclin-dependent kinases (CDKs). A key mechanism of CDK inactivation is ubiquitin-mediated cyclin proteolysis, which is triggered by the late mitotic activation of a ubiquitin ligase known as the anaphase-promoting complex (APC). Activation of the APC requires its association with substoichiometric activating subunits termed Cdc20 and Hct1 (also known as Cdh1). Here, we explore the molecular function and regulation of the APC regulatory subunit Hct1 in Saccharomyces cerevisiae. RESULTS: Recombinant Hct1 activated the cyclin-ubiquitin ligase activity of APC isolated from multiple cell cycle stages. APC isolated from cells arrested in G1, or in late mitosis due to the cdc14-1 mutation, was more responsive to Hct1 than APC isolated from other stages. We found that Hct1 was phosphorylated in vivo at multiple CDK consensus sites during cell cycle stages when activity of the cyclin-dependent kinase Cdc28 is high and APC activity is low. Purified Hct1 was phosphorylated in vitro at these sites by purified Cdc28-cyclin complexes, and phosphorylation abolished the ability of Hct1 to activate the APC in vitro. The phosphatase Cdc14, which is known to be required for APC activation in vivo, was able to reverse the effects of Cdc28 by catalyzing Hct1 dephosphorylation and activation. CONCLUSIONS: We conclude that Hct1 phosphorylation is a key regulatory mechanism in the control of cyclin destruction. Phosphorylation of Hct1 provides a mechanism by which Cdc28 blocks its own inactivation during S phase and early mitosis. Following anaphase, dephosphorylation of Hct1 by Cdc14 may help initiate cyclin destruction.


Assuntos
Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Ligases/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Tirosina Fosfatases , Proteínas de Saccharomyces cerevisiae , Complexos Ubiquitina-Proteína Ligase , Ciclossomo-Complexo Promotor de Anáfase , Proteínas Cdh1 , Ativação Enzimática , Mitose , Fosforilação , Ubiquitina-Proteína Ligases
16.
Curr Biol ; 8(9): 497-507, 1998 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-9560342

RESUMO

BACKGROUND: Following chromosome segregation in anaphase, ubiquitin-dependent degradation of mitotic cyclins contributes to the exit from mitosis. A key step in this process is catalyzed by a ubiquitin-protein ligase known as the anaphase-promoting complex (APC), the regulation of which is poorly understood. The Polo-related protein kinase Cdc5 in Saccharomyces cerevisiae might encode a regulator of the APC, because cdc5 mutant cells arrest with a late mitotic phenotype similar to that observed in cells with defective cyclin destruction. RESULTS: We investigated the role of Cdc5 in the regulation of mitotic cyclin degradation. In cdc5-1 mutant cells, we observed a defect in the destruction of cyclins and a reduction in the cyclin-ubiquitin ligase activity of the APC. Overexpression of CDC5 resulted in increased APC activity and mitotic cyclin destruction in asynchronous cells or in cells arrested in metaphase. CDC5 mutation or overexpression did not affect the degradation of the APC substrate Pds 1, which is normally degraded at the metaphase-to-anaphase transition. Cyclin-specific APC activity in cells overexpressing CDC5 was reduced in the absence of the APC regulatory proteins Hct 1 and Cdc20. In G1, Cdc5 itself was degraded by an APC-dependent and Hct1-dependent mechanism. CONCLUSIONS: We conclude that Cdc5 is a positive regulator of cyclin-specific APC activity in late mitosis. Degradation of Cdc5 in G1 might provide a feedback mechanism by which the APC destroys its activator at the onset of the next cell cycle.


Assuntos
Ciclina B , Ciclinas/metabolismo , Proteínas Fúngicas/fisiologia , Proteínas Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Fuso Acromático/fisiologia , Proteína da Polipose Adenomatosa do Colo , Proteína Quinase CDC28 de Saccharomyces cerevisiae/fisiologia , Proteínas Cdc20 , Proteínas Cdh1 , Proteínas de Ciclo Celular/fisiologia , Ciclinas/fisiologia , Proteínas do Citoesqueleto/fisiologia , Proteínas Fúngicas/metabolismo , Fase G1/fisiologia , Mutação/genética , Mutação/fisiologia , Proteínas Nucleares/fisiologia , Proteínas Quinases/biossíntese , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/genética , Securina , Fuso Acromático/metabolismo
17.
Mol Cell Biol ; 20(3): 749-54, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10629030

RESUMO

In the budding yeast Saccharomyces cerevisiae, Cdc37 is required for the productive formation of Cdc28-cyclin complexes. The cdc37-1 mutant arrests at Start with low levels of Cdc28 protein, which is predominantly unphosphorylated at Thr169, fails to bind cyclin, and has little protein kinase activity. We show here that Cdc28 and not cyclin is specifically defective in the cdc37-1 mutant and that Cdc37 likely does not act as an assembly factor for Cdc28-cyclin complex formation. We have also found that the levels and activity of the protein kinase Cak1 are significantly reduced in the cdc37-1 mutant. Pulse-chase analysis indicates that Cdc28 and Cak1 proteins are both destabilized when Cdc37 function is absent during but not after translation. In addition, Cdc37 promotes the production of Cak1, but not that of Cdc28, when coexpressed in insect cells. We conclude that budding yeast Cdc37, like its higher eukaryotic homologs, promotes the physical integrity of multiple protein kinases, perhaps by virtue of a cotranslational role in protein folding.


Assuntos
Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinases Ciclina-Dependentes , Proteínas de Drosophila , Chaperonas Moleculares , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Proteína Quinase CDC28 de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/isolamento & purificação , Estabilidade Enzimática , Genótipo , Cinética , Mutagênese , Fosforilação , Fosfotreonina , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases/isolamento & purificação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Quinase Ativadora de Quinase Dependente de Ciclina
18.
Mol Cell Biol ; 13(9): 5290-300, 1993 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-7689149

RESUMO

The kinase activity of c-Src is normally repressed in vertebrate cells by extensive phosphorylation of Y-527. C-terminal Src kinase (CSK) is a candidate for the enzyme that catalyzes this phosphorylation. We have used budding yeast to study the regulation of c-Src activity by CSK in intact cells. Expression of c-Src in Saccharomyces cerevisiae, which lacks endogenous c-Src and Y-527 kinases, induces a kinase-dependent growth inhibition. Coexpression of CSK in these cells results in phosphorylation of c-Src on Y-527 and suppression of the c-Src phenotype. CSK does not fully suppress the activity of c-Src mutants lacking portions of the SH2 or SH3 domains, even though these mutant proteins are phosphorylated on Y-527 by CSK both in vivo and in vitro. These results suggest that both the SH2 and SH3 domains of c-Src are required for the suppression of c-Src activity by Y-527 phosphorylation.


Assuntos
Proteína Oncogênica pp60(v-src)/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Proteína Tirosina Quinase CSK , Divisão Celular , Análise Mutacional de DNA , Fenótipo , Fosfoproteínas/metabolismo , Fosforilação , Fosfotirosina , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae , Relação Estrutura-Atividade , Tirosina/análogos & derivados , Tirosina/metabolismo , Quinases da Família src
19.
Mol Cell Biol ; 15(1): 345-50, 1995 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-7799941

RESUMO

The cyclin-dependent protein kinases (CDKs) are activated by association with cyclins and by phosphorylation at a conserved threonine residue by the CDK-activating kinase (CAK). We have studied the binding of various human CDK and cyclin subunits in vitro, using purified proteins derived from baculovirus-infected insect cells. We find that most CDK-cyclin complexes known to exist in human cells (CDC2-cyclin B, CDK2-cyclin A, and CDK2-cyclin E) form with high affinity in the absence of phosphorylation or other cellular components. One complex (CDC2-cyclin A) forms with high affinity only after CAK-mediated phosphorylation of CDC2 at the activating threonine residue. CDC2 does not bind with high affinity to cyclin E in vitro, even after phosphorylation of the CDC2 subunit. Thus, phosphorylation is of varying importance in the formation of high-affinity CDK-cyclin complexes.


Assuntos
Proteína Quinase CDC2/metabolismo , Quinases relacionadas a CDC2 e CDC28 , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Cromatografia em Gel , Quinase 2 Dependente de Ciclina , Humanos , Técnicas In Vitro , Mutagênese Sítio-Dirigida , Fosforilação , Protamina Quinase/metabolismo , Proteínas Recombinantes , Relação Estrutura-Atividade , Quinase Ativadora de Quinase Dependente de Ciclina
20.
Mol Cell Biol ; 21(1): 88-99, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11113184

RESUMO

Cyclin-dependent kinase 7 (CDK7) is the catalytic subunit of the metazoan CDK-activating kinase (CAK), which activates CDKs, such as CDC2 and CDK2, through phosphorylation of a conserved threonine residue in the T loop. Full activation of CDK7 requires association with a positive regulatory subunit, cyclin H, and phosphorylation of a conserved threonine residue at position 170 in its own T loop. We show that threonine-170 of CDK7 is phosphorylated in vitro by its targets, CDC2 and CDK2, which also phosphorylate serine-164 in the CDK7 T loop, a site that perfectly matches their consensus phosphorylation site. In contrast, neither CDK4 nor CDK7 itself can phosphorylate the CDK7 T loop in vitro. The ability of CDC2 or CDK2 and CDK7 to phosphorylate each other but not themselves implies that each kinase can discriminate among closely related sequences and can recognize a substrate site that diverges from its usual preferred site. To understand the basis for this paradoxical substrate specificity, we constructed a chimeric CDK with the T loop of CDK7 grafted onto the body of CDK2. Surprisingly, the hybrid enzyme, CDK2-7, was efficiently activated in cyclin A-dependent fashion by CDK7 but not at all by CDK2. CDK2-7, moreover, phosphorylated wild-type CDK7 but not CDK2. Our results suggest that the primary amino acid sequence of the T loop plays only a minor role, if any, in determining the specificity of cyclin-dependent CAKs for their CDK substrates and that protein-protein interactions involving sequences outside the T loop can influence substrate specificity both positively and negatively.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Quinases Ciclina-Dependentes/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Baculoviridae/genética , Proteína Quinase CDC2/metabolismo , Ciclo Celular , Sequência Consenso/genética , Quinase 2 Dependente de Ciclina , Quinases Ciclina-Dependentes/genética , Ciclinas/fisiologia , Ativação Enzimática , Células HeLa , Humanos , Dados de Sequência Molecular , Mutação/genética , Fosfopeptídeos/análise , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Quinase Ativadora de Quinase Dependente de Ciclina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA