Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cereb Cortex ; 28(4): 1532-1548, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29420750

RESUMO

We recently reported that right-side dominance of the inferior parietal lobule (IPL) in self-body recognition (proprioceptive illusion) task emerges during adolescence in typical human development. Here, we extend this finding by demonstrating that functional lateralization to the right IPL also develops during adolescence in another self-body (specifically a self-face) recognition task. We collected functional magnetic resonance imaging (fMRI) data from 60 right-handed healthy children (8-11 years), adolescents (12-15 years), and adults (18-23 years; 20 per group) while they judged whether a presented face was their own (Self) or that of somebody else (Other). We also analyzed fMRI data collected while they performed proprioceptive illusion task. All participants performed self-face recognition with high accuracy. Among brain regions where self-face-related activity (Self vs. Other) developed, only right IPL activity developed predominantly for self-face processing, with no substantial involvement in other-face processing. Adult-like right-dominant use of IPL emerged during adolescence, but was not yet present in childhood. Adult-like common activation between the tasks also emerged during adolescence. Adolescents showing stronger right-lateralized IPL activity during illusion also showed this during self-face recognition. Our results suggest the importance of the right IPL in neuronal processing of information associated with one's own body in typically developing humans.


Assuntos
Reconhecimento Facial/fisiologia , Lateralidade Funcional/fisiologia , Ilusões/fisiologia , Lobo Parietal/fisiologia , Propriocepção/fisiologia , Reconhecimento Psicológico/fisiologia , Adolescente , Criança , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Lobo Parietal/diagnóstico por imagem , Estimulação Luminosa , Adulto Jovem
2.
Cereb Cortex ; 27(11): 5385-5397, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28968653

RESUMO

Functional lateralization can be an indicator of brain maturation. We have consistently shown that, in the adult brain, proprioceptive processing of muscle spindle afferents generating illusory movement of the right hand activates inferior frontoparietal cortical regions in a right-side dominant manner in addition to the cerebrocerebellar motor network. Here we provide novel evidence regarding the development of the right-dominant use of the inferior frontoparietal cortical regions in humans using this task. We studied brain activity using functional magnetic resonance imaging while 60 right-handed blindfolded healthy children (8-11 years), adolescents (12-15 years), and young adults (18-23 years) (20 per group) experienced the illusion. Adult-like right-dominant use of the inferior parietal lobule (IPL) was observed in adolescents, while children used the IPL bilaterally. In contrast, adult-like lateralized cerebrocerebellar motor activation patterns were already observable in children. The right-side dominance progresses during adolescence along with the suppression of the left-sided IPL activity that emerges during childhood. Therefore, the neuronal processing implemented in the adult's right IPL during the proprioceptive illusion task is likely mediated bilaterally during childhood, and then becomes right-lateralized during adolescence at a substantially later time than the lateralized use of the cerebrocerebellar motor system for kinesthetic processing.


Assuntos
Lateralidade Funcional/fisiologia , Ilusões/fisiologia , Lobo Parietal/crescimento & desenvolvimento , Lobo Parietal/fisiologia , Propriocepção/fisiologia , Adolescente , Mapeamento Encefálico , Criança , Feminino , Mãos/crescimento & desenvolvimento , Mãos/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Movimento/fisiologia , Lobo Parietal/diagnóstico por imagem , Estimulação Física , Psicofísica , Vibração , Adulto Jovem
3.
J Neurosci ; 35(10): 4268-79, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25762673

RESUMO

Humans' ability to recognize objects is remarkably robust across a variety of views unless faces are presented upside-down. Whether this face inversion effect (FIE) results from qualitative (distinct mechanisms) or quantitative processing differences (a matter of degree within common mechanisms) between upright and inverted faces has been intensely debated. Studies have focused on preferential responses to faces in face-specific brain areas, although face recognition also involves nonpreferential responses in non-face-specific brain areas. By using dynamic causal modeling with Bayesian model selection, here we show that dissociable cortical pathways are responsible for qualitative and quantitative mechanisms in the FIE in the distributed network for face recognition. When faces were upright, the early visual cortex (VC) and occipital and fusiform face areas (OFA, FFA) suppressed couplings to the lateral occipital cortex (LO), a primary locus of object processing. In contrast, they did not inhibit the LO when faces were inverted but increased couplings to the intraparietal sulcus, which has been associated with visual working memory. Furthermore, we found that upright and inverted face processing together involved the face network consisting of the VC, OFA, FFA, and inferior frontal gyrus. Specifically, modulatory connectivity within the common pathways (VC-OFA), implicated in the parts-based processing of faces, strongly correlated with behavioral FIE performance. The orientation-dependent dynamic reorganization of effective connectivity indicates that the FIE is mediated by both qualitative and quantitative differences in upright and inverted face processing, helping to resolve a central debate over the mechanisms of the FIE.


Assuntos
Mapeamento Encefálico , Córtex Cerebral/fisiologia , Face , Reconhecimento Visual de Modelos/fisiologia , Adulto , Análise de Variância , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Modelos Neurológicos , Vias Neurais/fisiologia , Estimulação Luminosa , Estatística como Assunto , Adulto Jovem
4.
J Neurophysiol ; 111(3): 488-98, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24155004

RESUMO

Itch is an unpleasant sensation with the desire to scratch. Although it is well known that scratching itchy skin is pleasurable, the cerebral mechanisms underlying this phenomenon are poorly understood. We hypothesized that the reward system is associated with scratching-induced pleasantness. To investigate this hypothesis, a functional magnetic resonance imaging study was performed in 16 healthy subjects. Pleasantness was evoked by scratching the wrists where itch stimuli were applied, while scratching the dorsal forearms, far from itch stimuli, did not evoke pleasantness. Interestingly, pleasantness evoked by scratching activated not only the reward system (i.e., the striatum and midbrain) but also key regions of perception (i.e., the primary somatosensory cortex) and awareness of subjective feelings (i.e., the insular cortex), indicating that a broad network is involved in scratching-induced pleasantness. Moreover, although itch was suppressed by scratching, motor-related regions such as the supplementary motor area, premotor cortex, and cerebellum showed significant activation when pleasantness was evoked. This activation could explain why scratching-induced pleasantness potentially reinforces scratching behaviors. This study is the first to identify networks activated by scratching-induced pleasantness. The results of the present study provide important information on the cerebral mechanisms underlying why scratching itchy skin evokes pleasurable feelings that reinforce scratching behaviors.


Assuntos
Mapeamento Encefálico , Córtex Cerebral/fisiologia , Prazer , Percepção do Tato , Adulto , Potenciais Somatossensoriais Evocados , Feminino , Humanos , Masculino , Mesencéfalo/fisiologia , Prurido/psicologia , Recompensa , Pele/inervação
5.
Nat Commun ; 15(1): 3493, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684653

RESUMO

Extraterrestrial minerals on the surface of airless Solar System bodies undergo gradual alteration processes known as space weathering over long periods of time. The signatures of space weathering help us understand the phenomena occurring in the Solar System. However, meteorites rarely retain the signatures, making it impossible to study the space weathering processes precisely. Here, we examine samples retrieved from the asteroid Ryugu by the Hayabusa2 spacecraft and discover the presence of nonmagnetic framboids through electron holography measurements that can visualize magnetic flux. Magnetite particles, which normally provide a record of the nebular magnetic field, have lost their magnetic properties by reduction via a high-velocity (>5 km s-1) impact of a micrometeoroid with a diameter ranging from 2 to 20 µm after destruction of the parent body of Ryugu. Around these particles, thousands of metallic-iron nanoparticles with a vortex magnetic domain structure, which could have recorded a magnetic field in the impact event, are found. Through measuring the remanent magnetization of the iron nanoparticles, future studies are expected to elucidate the nature of the nebular/interplanetary magnetic fields after the termination of aqueous alteration in an asteroid.

6.
Brain Sci ; 13(5)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37239187

RESUMO

Long-term motor training can cause functional and structural changes in the human brain. Assessing how the training of specific movements affects specific parts of the neural circuitry is essential to understand better the underlying mechanisms of motor training-induced plasticity in the human brain. We report a single-case neuroimaging study that investigated functional and structural properties in a professional athlete of wheelchair racing. As wheelchair racing requires bilateral synchronization of upper limb movements, we hypothesized that functional and structural properties of interhemispheric interactions in the central motor system might differ between the professional athlete and controls. Functional and diffusion magnetic resonance imaging (fMRI and dMRI) data were obtained from a top Paralympian (P1) in wheelchair racing. With 23 years of wheelchair racing training starting at age eight, she holds an exceptional competitive record. Furthermore, fMRI and dMRI data were collected from three other paraplegic participants (P2-P4) with long-term wheelchair sports training other than wheelchair racing and 37 able-bodied control volunteers. Based on the fMRI data analyses, P1 showed activation in the bilateral precentral hand sections and greater functional connectivity between these sections during a right-hand unimanual task. In contrast, other paraplegic participants and controls showed activation in the contralateral hemisphere and deactivation in the ipsilateral hemisphere. Moreover, dMRI data analysis revealed that P1 exhibited significantly lower mean diffusivity along the transcallosal pathway connecting the bilateral precentral motor regions than control participants, which was not observed in the other paraplegic participants. These results suggest that long-term training with bilaterally synchronized upper-limb movements may promote bilateral recruitment of the precentral hand sections. Such recruitment may affect the structural circuitry involved in the interhemispheric interaction between the bilateral precentral regions. This study provides valuable evidence of the extreme adaptability of the human brain.

7.
Nat Commun ; 14(1): 532, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797235

RESUMO

Chondrule-like objects and Ca-Al-rich inclusions (CAIs) are discovered in the retuned samples from asteroid Ryugu. Here we report results of oxygen isotope, mineralogical, and compositional analysis of the chondrule-like objects and CAIs. Three chondrule-like objects dominated by Mg-rich olivine are 16O-rich and -poor with Δ17O (=δ17O - 0.52 × Î´18O) values of ~ -23‰ and ~ -3‰, resembling what has been proposed as early generations of chondrules. The 16O-rich objects are likely to be melted amoeboid olivine aggregates that escaped from incorporation into 16O-poor chondrule precursor dust. Two CAIs composed of refractory minerals are 16O-rich with Δ17O of ~ -23‰ and possibly as old as the oldest CAIs. The discovered objects (<30 µm) are as small as those from comets, suggesting radial transport favoring smaller objects from the inner solar nebula to the formation location of the Ryugu original parent body, which is farther from the Sun and scarce in chondrules. The transported objects may have been mostly destroyed during aqueous alteration in the Ryugu parent body.

8.
Sci Rep ; 13(1): 14096, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644091

RESUMO

In the samples collected from the asteroid Ryugu, magnetite displays natural remanent magnetization due to nebular magnetic field, whereas contemporaneously grown iron sulfide does not display stable remanent magnetization. To clarify this counterintuitive feature, we observed their nanoscale magnetic domain structures using electron holography and found that framboidal magnetites have an external magnetic field of 300 A m-1, similar to the bulk value, and its magnetic stability was enhanced by interactions with neighboring magnetites, permitting a disk magnetic field to be recorded. Micrometer-sized pyrrhotite showed a multidomain magnetic structure that was unable to retain natural remanent magnetization over a long time due to short relaxation time of magnetic-domain-wall movement, whereas submicron-sized sulfides formed a nonmagnetic phase. These results show that both magnetite and sulfide could have formed simultaneously during the aqueous alteration in the parent body of the asteroid Ryugu.

9.
Sci Adv ; 9(49): eadi3789, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38055820

RESUMO

The carbonaceous asteroid Ryugu has been explored by the Hayabusa2 spacecraft to elucidate the actual nature of hydrous asteroids. Laboratory analyses revealed that the samples from Ryugu are comparable to unheated CI carbonaceous chondrites; however, reflectance spectra of Ryugu samples and CIs do not coincide. Here, we demonstrate that Ryugu sample spectra are reproduced by heating Orgueil CI chondrite at 300°C under reducing conditions, which caused dehydration of terrestrial weathering products and reduction of iron in phyllosilicates. Terrestrial weathering of CIs accounts for the spectral differences between Ryugu sample and CIs, which is more severe than space weathering that likely explains those between asteroid Ryugu and the collected samples. Previous assignments of CI chondrite parent bodies, i.e., chemically most primitive objects in the solar system, are based on the spectra of CI chondrites. This study indicates that actual spectra of CI parent bodies are much darker and flatter at ultraviolet to visible wavelengths than the spectra of CI chondrites.

10.
J Exp Child Psychol ; 113(3): 401-14, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22906302

RESUMO

This study investigated how infants perceive and interpret human body movement. We recorded the eye movements and pupil sizes of 9- and 12-month-old infants and of adults (N=14 per group) as they observed animation clips of biomechanically possible and impossible arm movements performed by a human and by a humanoid robot. Both 12-month-old infants and adults spent more time looking at the elbows during impossible compared with possible arm movements, irrespective of the appearance of the actor. These results suggest that by 12 months of age, infants recognize biomechanical constraints on how arms move, and they extend this knowledge to humanoid robots. Adults exhibited more pupil dilation in response to the human's impossible arm movements compared with the possible ones, but 9- and 12-month-old infants showed no differential pupil dilation to the same actions. This finding suggests that the processing of human body movements might still be immature in 12-month-olds, as they did not show an emotional response to biomechanically impossible body movements. We discuss these findings in relation to the hypothesis that perception of others' body movements relies upon the infant's own sensorimotor experience.


Assuntos
Desenvolvimento Infantil , Cognição , Julgamento , Movimento , Percepção Visual , Adulto , Fatores Etários , Nível de Alerta , Fenômenos Biomecânicos , Movimentos Oculares , Feminino , Humanos , Lactente , Japão , Masculino , Pupila , Robótica
11.
Brain Sci ; 12(10)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36291229

RESUMO

Previous studies have revealed drastic changes in motor processing in individuals with congenital or acquired limb deficiencies and dysfunction. However, little is known about whether their brains also exhibit characteristic proprioceptive processing. Using functional magnetic resonance imaging, we examined the brain activity characteristics of four individuals with congenital or acquired paraplegia (paraplegic group) who underwent long-term wheelchair sports training, when they passively experienced a right-hand movement (passive task) and when they actively performed a right-hand motor task (active task), compared to 37 able-bodied individuals (control group). Compared with the control group, the paraplegic group showed significantly greater activity in the foot section of the left primary motor cortex and in the inferior frontoparietal proprioceptive network during the passive task. In the paraplegic group, the left intraparietal sulcus region was activated during the passive task, but suppressed during the active task, which was not observed in the control group. This shows the facilitation of hand proprioceptive processing and unique usage of the intraparietal sulcus region in proprioceptive motor processing in the brains of paraplegic individuals with long-term wheelchair sports training.

12.
Front Syst Neurosci ; 16: 780652, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498215

RESUMO

The human brain has the capacity to drastically alter its somatotopic representations in response to congenital or acquired limb deficiencies and dysfunctions. The main purpose of the present study was to elucidate such extreme adaptability in the brain of an active top wheelchair racing Paralympian (participant P1) who has congenital paraplegia (dysfunction of bilateral lower limbs). Participant P1 has undergone long-term wheelchair racing training using bilateral upper limbs and has won a total of 19 medals in six consecutive summer Paralympic games as of 2021. We examined the functional and structural changes in the foot section of the primary motor cortex (M1) in participant P1 as compared to able-bodied control participants. We also examined the functional and structural changes in three other individuals (participants P2, P3, and P4) with acquired paraplegia, who also had long-term non-use period of the lower limbs and had undergone long-term training for wheelchair sports (but not top athletes at the level of participant P1). We measured brain activity in all the participants using functional magnetic resonance imaging (MRI) when bimanual wrist extension-flexion movement was performed, and the structural MRI images were collected. Compared to 37 control participants, participant P1 showed significantly greater activity in the M1 foot section during the bimanual task, and significant local GM expansion in this section. Significantly greater activity in the M1 foot section was also observed in participant P4, but not in P2 and P3, and the significant local GM expansion was observed in participant P2, but not in P3 and P4. Thus, functional or structural change was observed in an acquired paraplegic participant, but was not observed in all the paraplegic participants. The functional and structural changes typically observed in participant P1 may represent extreme adaptability of the human brain. We discuss the results in terms of a new idea of hyper-adaptation.

13.
Neuropsychologia ; 166: 108145, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35007617

RESUMO

Time duration, an essential feature of the physical world, is perceived and cognitively interpreted subjectively. While this perception is deeply connected with arousal and interoceptive signals, the underlying neural mechanisms remain elusive. As the insula is critical for integrating information from the external world with the organism's inner state, we hypothesized that it might have a central role in the perception of time duration and contribute to its estimation accuracy. We conducted a functional magnetic resonance imaging study with 27 healthy participants performing temporal duration and pitch bisection tasks that used the same stimuli. By comparison with two referents with short and long duration in the time range of 1 s (close to the heart rate period), or low and high pitch, participants had to decide whether target stimuli were closer in duration or pitch to the referent stimuli. The temporal bisection point between short and long duration perception was obtained through a psychometric response curve analysis for each participant. The deviation between the bisection point and the average of reference stimuli durations was used as a marker of duration accuracy. Duration discrimination-specific activation, contrasted to pitch discrimination, was found in the dorsomedial prefrontal cortex, bilateral cerebellum, and right anterior insular cortex (AIC), extending to the inferior frontal gyrus (IFG), inferior parietal lobule, and frontal pole. The activity in the right AIC and IFG was positively correlated with the accuracy of duration discrimination. The right AIC is known to be related to the reproduction of duration, whereas the right IFG is involved in categorical decisions. Thus, the comparison between the referent durations reproduced in the AIC and the target duration may occur in the right IFG. We conclude that the right AIC and IFG contribute to the accurate perception of temporal duration.


Assuntos
Percepção do Tempo , Encéfalo/fisiologia , Mapeamento Encefálico , Lobo Frontal , Humanos , Imageamento por Ressonância Magnética/métodos , Lobo Parietal , Percepção do Tempo/fisiologia
14.
Brain Sci ; 11(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34439718

RESUMO

Interhemispheric inhibition (IHI) between the left and right primary motor cortices (M1) plays an important role when people perform an isolated unilateral limb movement. Moreover, negative blood oxygenation-level dependent signal (deactivation) obtained from the M1 ipsilateral to the limb could be a surrogate IHI marker. Studies have reported deactivation in the hand section of the ipsilateral M1 during simple unilateral hand movement. However, deactivation in the foot section during unilateral foot movement has not been reported. Therefore, IHI between the foot sections of the bilateral M1s has been considered very weak or absent. Thirty-seven healthy adults performed active control of the right foot and also passively received vibration to the tendon of the tibialis anterior muscle of the right foot, which activates the foot section of the contralateral M1, with brain activity being examined through functional magnetic resonance imaging. The vibration and active tasks significantly and non-significantly, respectively, deactivated the foot section of the ipsilateral M1, with a corresponding 86% and 60% of the participants showing decreased activity. Thus, there could be IHI between the foot sections of the bilateral M1s. Further, our findings demonstrate between-task differences and similarities in cross-somatotopic deactivation.

15.
Brain Sci ; 11(3)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804090

RESUMO

Self-consciousness is a personality trait associated with an individual's concern regarding observable (public) and unobservable (private) aspects of self. Prompted by previous functional magnetic resonance imaging (MRI) studies, we examined possible gray-matter expansions in emotion-related and default mode networks in individuals with higher public or private self-consciousness. One hundred healthy young adults answered the Japanese version of the Self-Consciousness Scale (SCS) questionnaire and underwent structural MRI. A voxel-based morphometry analysis revealed that individuals scoring higher on the public SCS showed expansions of gray matter in the emotion-related regions of the cingulate and insular cortices and in the default mode network of the precuneus and medial prefrontal cortex. In addition, these gray-matter expansions were particularly related to the trait of "concern about being evaluated by others", which was one of the subfactors constituting public self-consciousness. Conversely, no relationship was observed between gray-matter volume in any brain regions and the private SCS scores. This is the first study showing that the personal trait of concern regarding public aspects of the self may cause long-term substantial structural changes in social brain networks.

16.
Brain Imaging Behav ; 15(2): 656-676, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32240463

RESUMO

In people with normal sight, mental simulation (motor imagery) of an experienced action involves a multisensory (especially kinesthetic and visual) emulation process associated with the action. Here, we examined how long-term blindness influences sensory experience during motor imagery and its neuronal correlates by comparing data obtained from blind and sighted people. We scanned brain activity with functional magnetic resonance imaging (fMRI) while 16 sighted and 14 blind male volunteers imagined either walking or jogging around a circle of 2 m radius. In the training before fMRI, they performed these actions with their eyes closed. During scanning, we explicitly instructed the blindfolded participants to generate kinesthetic motor imagery. After the experimental run, they rated the degree to which their motor imagery became kinesthetic or spatio-visual. The imagery of blind people was more kinesthetic as per instructions, while that of the sighted group became more spatio-visual. The imagery of both groups commonly activated bilateral frontoparietal cortices including supplementary motor areas (SMA). Despite the lack of group differences in degree of brain activation, we observed stronger functional connectivity between the SMA and cerebellum in the blind group compared to that in the sighted group. To conclude, long-term blindness likely changes sensory emulation during motor imagery to a more kinesthetic mode, which may be associated with stronger functional coupling in kinesthetic brain networks compared with that in sighted people. This study adds valuable knowledge on motor cognition and mental imagery processes in the blind.


Assuntos
Imaginação , Imageamento por Ressonância Magnética , Cegueira/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Cinestesia , Masculino
17.
Primates ; 62(5): 735-747, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34302253

RESUMO

Visual processing of the body movements of other animals is important for adaptive animal behaviors. It is widely known that animals can distinguish articulated animal movements even when they are just represented by points of light such that only information about biological motion is retained. However, the extent to which nonhuman great apes comprehend the underlying structural and physiological constraints affecting each moving body part, i.e., biomechanics, is still unclear. To address this, we examined the understanding of biomechanics in bonobos (Pan paniscus) and chimpanzees (Pan troglodytes), following a previous study on humans (Homo sapiens). Apes underwent eye tracking while viewing three-dimensional computer-generated (CG) animations of biomechanically possible or impossible elbow movements performed by a human, robot, or nonhuman ape. Overall, apes did not differentiate their gaze between possible and impossible movements of elbows. However, some apes looked at elbows for longer when viewing impossible vs. possible robot movements, which indicates that they may have had knowledge of biomechanics and that this knowledge could be extended to a novel agent. These mixed results make it difficult to draw a firm conclusion regarding the extent to which apes understand biomechanics. We discuss some methodological features that may be responsible for the results, as well as implications for future nonhuman animal studies involving the presentation of CG animations or measurement of gaze behaviors.


Assuntos
Tecnologia de Rastreamento Ocular , Hominidae , Animais , Fenômenos Biomecânicos , Computadores , Pan paniscus , Pan troglodytes
18.
Sci Rep ; 11(1): 22696, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34811433

RESUMO

Improving deteriorated sensorimotor functions in older individuals is a social necessity in a super-aging society. Previous studies suggested that the declined interhemispheric sensorimotor inhibition observed in older adults is associated with their deteriorated hand/finger dexterity. Here, we examined whether bimanual digit exercises, which can train the interhemispheric inhibitory system, improve deteriorated hand/finger dexterity in older adults. Forty-eight healthy, right-handed, older adults (65-78 years old) were divided into two groups, i.e., the bimanual (BM) digit training and right-hand (RH) training groups, and intensive daily training was performed for 2 months. Before and after the training, we evaluated individual right hand/finger dexterity using a peg task, and the individual state of interhemispheric sensorimotor inhibition by analyzing ipsilateral sensorimotor deactivation via functional magnetic resonance imaging when participants experienced a kinesthetic illusory movement of the right-hand without performing any motor tasks. Before training, the degree of reduction/loss of ipsilateral motor-cortical deactivation was associated with dexterity deterioration. After training, the dexterity improved only in the BM group, and the dexterity improvement was correlated with reduction in ipsilateral motor-cortical activity. The capability of the brain to inhibit ipsilateral motor-cortical activity during a simple right-hand sensory-motor task is tightly related to right-hand dexterity in older adults.


Assuntos
Envelhecimento/fisiologia , Dedos/fisiologia , Inibição Psicológica , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Movimento/fisiologia , Adulto , Idoso , Mapeamento Encefálico/métodos , Exercício Físico/psicologia , Feminino , Lateralidade Funcional , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Método Simples-Cego , Adulto Jovem
19.
Neuroimage ; 50(4): 1357-63, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20123027

RESUMO

Enlarged head circumference and increased brain weight have been reported in infants with pervasive developmental disorders (PDD), and volumetric studies suggest that children with PDD have abnormally enlarged brain volumes. However, little is known about brain volume abnormalities in young adults with PDD. We explored gray matter (GM) volume in young adults with PDD. T1-weighted volumetric images were acquired with a 3-T magnetic resonance scanner from 32 males with high-functioning PDD (23.8+/-4.2 years; Full Scale Intelligence Quotient [FSIQ]=101.6+/-15.6) and 40 age-matched normal male control subjects (22.5+/-4.3 years; FSIQ=109.7+/-7.9). Regional GM volumes were compared between the two groups using voxel-based morphometry (VBM) with the Diffeomorphic Anatomical Registration using Exponentiated Lie algebra (DARTEL). Compared with the control group, the high-functioning PDD group showed significantly less GM in the right insula, the right inferior frontal gyrus, and the right inferior parietal lobule. A conservative threshold confirmed considerably smaller volumes in the right insula and inferior frontal gyrus. In these areas, negative correlations were found between Autism Spectrum Quotient scores and GM volume, although no significant correlations were found between each subject's FSIQ and GM volume. No regions showed greater GM volumes in the high-functioning PDD group. The insular cortex, which works as a relay area for multiple neurocognitive systems, may be one of the key regions underlying the complex clinical features of PDD. These smaller GM volumes in high-functioning PDD subjects may reflect the clinical features of PDD itself, rather than FSIQ.


Assuntos
Síndrome de Asperger/patologia , Transtorno Autístico/patologia , Lobo Frontal/patologia , Lobo Temporal/patologia , Adolescente , Adulto , Deficiências do Desenvolvimento/patologia , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador , Testes de Inteligência , Imageamento por Ressonância Magnética , Masculino , Fibras Nervosas Amielínicas/patologia , Tamanho do Órgão , Índice de Gravidade de Doença , Adulto Jovem
20.
Cereb Cortex Commun ; 1(1): tgaa085, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34296141

RESUMO

Hand/finger dexterity is well-developed in humans, and the primary motor cortex (M1) is believed to play a particularly important role in it. Here, we show that efficient recruitment of the contralateral M1 and neuronal inhibition of the ipsilateral M1 identified by simple hand motor and proprioceptive tasks are related to hand/finger dexterity and its ontogenetic development. We recruited healthy, right-handed children (n = 21, aged 8-11 years) and adults (n = 23, aged 20-26 years) and measured their brain activity using functional magnetic resonance imaging during active and passive right-hand extension-flexion tasks. We calculated individual active control-related activity (active-passive) to evaluate efficient brain activity recruitment and individual task-related deactivation (neuronal inhibition) during both tasks. Outside the scanner, participants performed 2 right-hand dexterous motor tasks, and we calculated the hand/finger dexterity index (HDI) based on their individual performance. Participants with a higher HDI exhibited less active control-related activity in the contralateral M1 defined by the active and passive tasks, independent of age. Only children with a higher HDI exhibited greater ipsilateral M1 deactivation identified by these tasks. The results imply that hand/finger dexterity can be predicted by recruitment and inhibition styles of the M1 during simple hand sensory-motor tasks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA