Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
2.
Immunity ; 53(4): 745-758.e4, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33010223

RESUMO

Innate immune responses rely on rapid and precise gene regulation mediated by accessibility of regulatory regions to transcription factors (TFs). In natural killer (NK) cells and other innate lymphoid cells, competent enhancers are primed during lineage acquisition, and formation of de novo enhancers characterizes the acquisition of innate memory in activated NK cells and macrophages. Here, we investigated how primed and de novo enhancers coordinate to facilitate high-magnitude gene induction during acute activation. Epigenomic and transcriptomic analyses of regions near highly induced genes (HIGs) in NK cells both in vitro and in a model of Toxoplasma gondii infection revealed de novo chromatin accessibility and enhancer remodeling controlled by signal-regulated TFs STATs. Acute NK cell activation redeployed the lineage-determining TF T-bet to de novo enhancers, independent of DNA-sequence-specific motif recognition. Thus, acute stimulation reshapes enhancer function through the combinatorial usage and repurposing of both lineage-determining and signal-regulated TFs to ensure an effective response.


Assuntos
Elementos Facilitadores Genéticos/genética , Elementos Facilitadores Genéticos/imunologia , Células Matadoras Naturais/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Animais , Cromatina/genética , Cromatina/imunologia , Feminino , Expressão Gênica/genética , Expressão Gênica/imunologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Toxoplasma/imunologia , Toxoplasmose/genética , Toxoplasmose/imunologia
3.
Cell ; 153(4): 840-54, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23663782

RESUMO

Proliferating mammalian cells use glutamine as a source of nitrogen and as a key anaplerotic source to provide metabolites to the tricarboxylic acid cycle (TCA) for biosynthesis. Recently, mammalian target of rapamycin complex 1 (mTORC1) activation has been correlated with increased nutrient uptake and metabolism, but no molecular connection to glutaminolysis has been reported. Here, we show that mTORC1 promotes glutamine anaplerosis by activating glutamate dehydrogenase (GDH). This regulation requires transcriptional repression of SIRT4, the mitochondrial-localized sirtuin that inhibits GDH. Mechanistically, mTORC1 represses SIRT4 by promoting the proteasome-mediated destabilization of cAMP-responsive element binding 2 (CREB2). Thus, a relationship between mTORC1, SIRT4, and cancer is suggested by our findings. Indeed, SIRT4 expression is reduced in human cancer, and its overexpression reduces cell proliferation, transformation, and tumor development. Finally, our data indicate that targeting nutrient metabolism in energy-addicted cancers with high mTORC1 signaling may be an effective therapeutic approach.


Assuntos
Glutamina/metabolismo , Proteínas Mitocondriais/metabolismo , Neoplasias/metabolismo , Sirtuínas/metabolismo , Fatores Ativadores da Transcrição/metabolismo , Animais , Proliferação de Células , Embrião de Mamíferos/citologia , Metabolismo Energético , Glutamato Desidrogenase/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos , Transplante de Neoplasias , Neoplasias/patologia , Serina-Treonina Quinases TOR/metabolismo , Transcrição Gênica , Transplante Heterólogo , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitinação
4.
Stem Cells ; 36(7): 1004-1019, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29569827

RESUMO

Induced pluripotent stem cells (iPSCs) stand to revolutionize the way we study human development, model disease, and eventually, treat patients. However, these cell sources produce progeny that retain embryonic and/or fetal characteristics. The failure to mature to definitive, adult-type cells is a major barrier for iPSC-based disease modeling and drug discovery. To directly address these concerns, we have developed a chemically defined, serum and feeder-free-directed differentiation platform to generate hematopoietic stem-progenitor cells (HSPCs) and resultant adult-type progeny from iPSCs. This system allows for strict control of signaling pathways over time through growth factor and/or small molecule modulation. Through direct comparison with our previously described protocol for the production of primitive wave hematopoietic cells, we demonstrate that induced HSPCs are enhanced for erythroid and myeloid colony forming potential, and strikingly, resultant erythroid-lineage cells display enhanced expression of adult ß globin indicating definitive pathway patterning. Using this system, we demonstrate the stage-specific roles of two key signaling pathways, Notch and the aryl hydrocarbon receptor (AHR), in the derivation of definitive hematopoietic cells. We illustrate the stage-specific necessity of Notch signaling in the emergence of hematopoietic progenitors and downstream definitive, adult-type erythroblasts. We also show that genetic or small molecule inhibition of the AHR results in the increased production of CD34+ CD45+ HSPCs while conversely, activation of the same receptor results in a block of hematopoietic cell emergence. Results presented here should have broad implications for hematopoietic stem cell transplantation and future clinical translation of iPSC-derived blood cells. Stem Cells 2018;36:1004-1019.


Assuntos
Hematopoese/fisiologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores Notch/genética , Diferenciação Celular , Humanos , Transdução de Sinais
5.
Blood Cells Mol Dis ; 69: 1-9, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29227829

RESUMO

The HBS1L-MYB intergenic region (chr6q23) regulates erythroid cell proliferation, maturation, and fetal hemoglobin (HbF) expression. An enhancer element within this locus, highlighted by a 3-bp deletion polymorphism (rs66650371), is known to interact with the promoter of the neighboring gene, MYB, to increase its expression, thereby regulating HbF production. RNA polymerase II binding and a 50-bp transcript from this enhancer region reported in ENCODE datasets suggested the presence of a long noncoding RNA (lncRNA). We characterized a novel 1283bp transcript (HMI-LNCRNA; chr6:135,096,362-135,097,644; hg38) that was transcribed from the enhancer region of MYB. Within erythroid cells, HMI-LNCRNA was almost exclusively present in nucleus, and was much less abundant than the mRNA for MYB. HMI-LNCRNA expression was significantly higher in erythroblasts derived from cultured adult peripheral blood CD34+ cells which expressed more HBB, compared to erythroblasts from cultured cord blood CD34+ cells which expressed much more HBG. Down-regulation of HMI-LNCRNA in HUDEP-2 cells, which expressed mostly HBB, significantly upregulated HBG expression both at the mRNA (200-fold) and protein levels, and promoted erythroid maturation. No change was found in the expression of BCL11A and other key transcription factors known to modulate HBG expression. HMI-LNCRNA plays an important role in regulating HBG expression, and its downregulation can result in a significant increase in HbF. HMI-LNCRNA might be a potential therapeutic target for HbF induction treatment in sickle cell disease and ß-thalassemia.


Assuntos
Cromossomos Humanos Par 6 , DNA Intergênico/genética , Hemoglobina Fetal/genética , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica , Genes myb , RNA Longo não Codificante , Sequência de Bases , Diferenciação Celular , Linhagem Celular , Eritroblastos/metabolismo , Células Eritroides/metabolismo , Técnicas de Silenciamento de Genes , Células-Tronco Hematopoéticas/metabolismo , Humanos , Locos de Características Quantitativas
6.
Proc Natl Acad Sci U S A ; 108(30): 12455-60, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21746920

RESUMO

Tuberous sclerosis complex (TSC) is a tumor suppressor syndrome characterized by benign tumors in multiple organs, including the brain and kidney. TSC-associated tumors exhibit hyperactivation of mammalian target of rapamycin complex 1 (mTORC1), a direct inhibitor of autophagy. Autophagy can either promote or inhibit tumorigenesis, depending on the cellular context. The role of autophagy in the pathogenesis and treatment of the multisystem manifestations of TSC is unknown. We found that the combination of mTORC1 and autophagy inhibition was more effective than either treatment alone in inhibiting the survival of tuberin (TSC2)-null cells, growth of TSC2-null xenograft tumors, and development of spontaneous renal tumors in Tsc2(+/-) mice. Down-regulation of Atg5 induced extensive central necrosis in TSC2-null xenograft tumors, and loss of one allele of Beclin1 almost completely blocked macroscopic renal tumor formation in Tsc2(+/-) mice. Surprisingly, given the finding that lowering autophagy blocks TSC tumorigenesis, genetic down-regulation of p62/sequestosome 1 (SQSTM1), the autophagy substrate that accumulates in TSC tumors as a consequence of low autophagy levels, strongly inhibited the growth of TSC2-null xenograft tumors. These data demonstrate that autophagy is a critical component of TSC tumorigenesis, suggest that mTORC1 inhibitors may have autophagy-dependent prosurvival effects in TSC, and reveal two distinct therapeutic targets for TSC: autophagy and the autophagy target p62/SQSTM1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Choque Térmico/metabolismo , Esclerose Tuberosa/metabolismo , Esclerose Tuberosa/patologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas Reguladoras de Apoptose/deficiência , Proteínas Reguladoras de Apoptose/genética , Autofagia/genética , Autofagia/fisiologia , Proteína 5 Relacionada à Autofagia , Proteína Beclina-1 , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Genes p53 , Proteínas de Choque Térmico/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Camundongos SCID , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , Complexos Multiproteicos , Proteínas/genética , Proteínas/metabolismo , Proteína Sequestossoma-1 , Serina-Treonina Quinases TOR , Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética
7.
Am J Respir Cell Mol Biol ; 49(1): 135-42, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23526212

RESUMO

Lymphangioleiomyomatosis (LAM) is a destructive lung disease primarily affecting women. Genetic studies indicate that LAM cells carry inactivating tuberous sclerosis complex (TSC)-2 mutations, and metastasize to the lung. We previously discovered that estradiol increases the metastasis of TSC2-deficient cells in mice carrying xenograft tumors. Here, we investigate the molecular basis underlying the estradiol-induced lung metastasis of TSC2-deficient cells, and test the efficacy of Faslodex (an estrogen receptor antagonist) in a preclinical model of LAM. We used a xenograft tumor model in which estradiol induces the lung metastasis of TSC2-deficient cells. We analyzed the impact of Faslodex on tumor size, the extracellular matrix organization, the expression of matrix metalloproteinase (MMP)-2, and lung metastasis. We also examined the effects of estradiol and Faslodex on MMP2 expression and activity in tuberin-deficient cells in vitro. Estradiol resulted in a marked reduction of Type IV collagen deposition in xenograft tumors, associated with 2-fold greater MMP2 concentrations compared with placebo-treated mice. Faslodex normalized the Type IV collagen changes in xenograft tumors, enhanced the survival of the mice, and completely blocked lung metastases. In vitro, estradiol enhanced MMP2 transcripts, protein accumulation, and activity. These estradiol-induced changes in MMP2 were blocked by Faslodex. In TSC2-deficient cells, estradiol increased MMP2 concentrations in vitro and in vivo, and induced extracellular matrix remodeling. Faslodex inhibits the estradiol-induced lung metastasis of TSC2-deficient cells. Targeting estrogen receptors with Faslodex may be of efficacy in the treatment of LAM.


Assuntos
Estradiol/análogos & derivados , Estradiol/efeitos adversos , Matriz Extracelular/efeitos dos fármacos , Neoplasias Pulmonares/secundário , Linfangioleiomiomatose/patologia , Remodelação das Vias Aéreas , Animais , Antineoplásicos/farmacologia , Colágeno Tipo IV/metabolismo , Avaliação Pré-Clínica de Medicamentos , Estradiol/farmacologia , Matriz Extracelular/metabolismo , Feminino , Fulvestranto , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Linfangioleiomiomatose/metabolismo , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos SCID , Ratos , Receptores de Estradiol/antagonistas & inibidores , Análise de Sobrevida , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Proc Natl Acad Sci U S A ; 106(8): 2635-40, 2009 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-19202070

RESUMO

Lymphangioleiomyomatosis (LAM) is an often fatal disease primarily affecting young women in which tuberin (TSC2)-null cells metastasize to the lungs. The mechanisms underlying the striking female predominance of LAM are unknown. We report here that 17-beta-estradiol (E(2)) causes a 3- to 5-fold increase in pulmonary metastases in male and female mice, respectively, and a striking increase in circulating tumor cells in mice bearing tuberin-null xenograft tumors. E(2)-induced metastasis is associated with activation of p42/44 MAPK and is completely inhibited by treatment with the MEK1/2 inhibitor, CI-1040. In vitro, E(2) inhibits anoikis of tuberin-null cells. Finally, using a bioluminescence approach, we found that E(2) enhances the survival and lung colonization of intravenously injected tuberin-null cells by 3-fold, which is blocked by treatment with CI-1040. Taken together these results reveal a new model for LAM pathogenesis in which activation of MEK-dependent pathways by E(2) leads to pulmonary metastasis via enhanced survival of detached tuberin-null cells.


Assuntos
Sobrevivência Celular/fisiologia , Estrogênios/fisiologia , Neoplasias Pulmonares/patologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Anoikis/fisiologia , Benzamidas/farmacologia , Proteínas de Transporte/antagonistas & inibidores , Feminino , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Metástase Neoplásica , Ovariectomia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Ratos , Serina-Treonina Quinases TOR , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética
9.
Artigo em Inglês | MEDLINE | ID: mdl-34001528

RESUMO

Not simply an attribute of the adaptive immune system, immunological memory can be viewed on multiple levels. Accordingly, the molecular basis of memory comprises multiple mechanisms. The advent of new sequencing technologies has greatly enhanced the understanding of gene regulation and lymphocyte specification, and improved measurement of chromatin states affords new insights into the epigenomic and transcriptomic programs that underlie memory. Beyond canonical genes, the involvement of long noncoding RNAs (lncRNAs) is becoming increasingly apparent, and it appears that there are more than two to three times as many lncRNAs as protein-coding genes. lncRNAs can directly interact with DNA, RNA, and proteins, and a single lncRNA can contain multiple modular domains and thus interact with different classes of molecules. Yet, most lncRNAs have not been tested for function, and even fewer knockout mice have been generated. It is therefore timely to consider new potential mechanisms that may contribute to immune memory.


Assuntos
RNA Longo não Codificante , Animais , Cromatina , Epigenômica , Regulação da Expressão Gênica , Linfócitos , Camundongos , RNA Longo não Codificante/metabolismo
10.
Hum Mol Genet ; 18(1): 151-63, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18845692

RESUMO

Tuberous sclerosis complex (TSC) is a tumor suppressor gene syndrome in which severe renal cystic disease can occur. Many renal cystic diseases, including autosomal dominant polycystic kidney disease (ADPKD), are associated with absence or dysfunction of the primary cilium. We report here that hamartin (TSC1) localizes to the basal body of the primary cilium, and that Tsc1(-/-) and Tsc2(-/-) mouse embryonic fibroblasts (MEFs) are significantly more likely to contain a primary cilium than wild-type controls. In addition, the cilia of Tsc1(-/-) and Tsc2(-/-) MEFs are 17-27% longer than cilia from wild-type MEFs. These data suggest a novel type of ciliary disruption in TSC, associated with enhanced cilia development. The TSC1 and TSC2 proteins function as a heterodimer to inhibit the activity of the mammalian target of rapamycin complex 1 (TORC1). The enhanced ciliary formation in the Tsc1(-/-) and Tsc2(-/-) MEFs was not abrogated by rapamycin, which indicates a TORC1-independent mechanism. Polycystin 1 (PC1), the product of the PKD1 gene, has been found to interact with TSC2, but Pkd1(-/-) MEFs did not have enhanced ciliary formation. Furthermore, while activation of mTOR has been observed in renal cysts from ADPKD patients, Pkd1(-/-) MEFs did not have evidence of constitutive mTOR activation, thereby underscoring the independent functions of the TSC proteins and PC1 in regulation of primary cilia and mTOR. Our data link the TSC proteins with the primary cilium and reveal a novel phenotype of enhanced ciliary formation in a cyst-associated disease.


Assuntos
Cílios/metabolismo , Rim Policístico Autossômico Dominante/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Canais de Cátion TRPP/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Cílios/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Rim/metabolismo , Rim/patologia , Camundongos , Camundongos Knockout , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Canais de Cátion TRPP/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética
11.
Blood Adv ; 2(15): 1998-2011, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30108108

RESUMO

Robust ß-globin expression in erythroid cells derived from induced pluripotent stem cells (iPSCs) increases the resolution with which red blood cell disorders such as sickle cell disease and ß thalassemia can be modeled in vitro. To better quantify efforts in augmenting ß-globin expression, we report the creation of a ß-globin reporter iPSC line that allows for the mapping of ß-globin expression throughout human erythropoietic development in real time at single-cell resolution. Coupling this tool with single-cell RNA sequencing (scRNAseq) identified features that distinguish ß-globin-expressing cells and allowed for the dissection of the developmental and maturational statuses of iPSC-derived erythroid lineage cells. Coexpression of embryonic, fetal, and adult globins in individual cells indicated that these cells correspond to a yolk sac erythromyeloid progenitor program of hematopoietic development, representing the onset of definitive erythropoiesis. Within this developmental program, scRNAseq analysis identified a gradient of erythroid maturation, with ß-globin-expressing cells showing increased maturation. Compared with other cells, ß-globin-expressing cells showed a reduction in transcripts coding for ribosomal proteins, increased expression of members of the ubiquitin-proteasome system recently identified to be involved in remodeling of the erythroid proteome, and upregulation of genes involved in the dynamic translational control of red blood cell maturation. These findings emphasize that definitively patterned iPSC-derived erythroblasts resemble their postnatal counterparts in terms of gene expression and essential biological processes, confirming their potential for disease modeling and regenerative medicine applications.


Assuntos
Eritroblastos/metabolismo , Eritropoese , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Globinas beta/biossíntese , Linhagem Celular Transformada , Eritroblastos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia
12.
JCI Insight ; 1(19): e86629, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27882343

RESUMO

Lymphangioleiomyomatosis (LAM) is a progressive lung disease that primarily affects young women. Genetic evidence suggests that LAM cells bearing TSC2 mutations migrate to the lungs, proliferate, and cause cystic remodeling. The female predominance indicates that estrogen plays a critical role in LAM pathogenesis, and we have proposed that estrogen promotes LAM cell metastasis by inhibition of anoikis. We report here that estrogen increased LAM patient-derived cells' resistance to anoikis in vitro, accompanied by decreased accumulation of the proapoptotic protein Bim, an activator of anoikis. The resistance to anoikis was reversed by the proteasome inhibitor, bortezomib. Treatment of LAM patient-derived cells with estrogen plus bortezomib promoted anoikis compared with estrogen alone. Depletion of Bim by siRNA in TSC2-deficient cells resulted in anoikis resistance. Treatment of mice with bortezomib reduced estrogen-promoted lung colonization of TSC2-deficient cells. Importantly, molecular depletion of Bim by siRNA in Tsc2-deficient cells increased lung colonization in a mouse model. Collectively, these data indicate that Bim plays a key role in estrogen-enhanced survival of LAM patient-derived cells under detached conditions that occur with dissemination. Thus, targeting Bim may be a plausible future treatment strategy in patients with LAM.


Assuntos
Anoikis , Proteína 11 Semelhante a Bcl-2/metabolismo , Estrogênios/fisiologia , Pneumopatias/patologia , Linfangioleiomiomatose/patologia , Proteínas Supressoras de Tumor/genética , Animais , Bortezomib/farmacologia , Feminino , Humanos , Pulmão/citologia , Camundongos , Camundongos SCID , Proteína 2 do Complexo Esclerose Tuberosa , Células Tumorais Cultivadas
13.
Cardiovasc Pathol ; 24(2): 80-93, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25434723

RESUMO

Despite high expression levels, the role of Tsc1 in cardiovascular tissue is ill defined. We launched this study to examine the role of Tsc1 in cardiac physiology and pathology. Mice in which Tsc1 was deleted in cardiac tissue and vascular smooth muscle (Tsc1c/cSM22cre(+/-)), developed progressive cardiomegaly and hypertension and died early. Hearts of Tsc1c/cSM22cre(+/-) mice displayed a progressive increase in cardiomyocyte number, and to a lesser extent, size between the ages of 1 and 6 weeks. In addition, compared to control hearts, proliferation markers (phospho-histone 3 and PCNA) were elevated in Tsc1c/cSM22cre(+/-) cardiomyocytes at 0-4 weeks, suggesting that cardiomyocyte proliferation was the predominant mechanism underlying cardiomegaly in Tsc1c/cSM22cre(+/-) mice. To examine the contribution of Tsc1 deletion in peripheral vascular smooth muscle to the cardiac phenotype, Tsc1c/cSM22cre(+/-) mice were treated with the antihypertensive, hydralazine. Prevention of hypertension had no effect on survival, cardiac size, or cardiomyocyte number in these mice. We furthermore generated mice in which Tsc1 was deleted only in vascular smooth muscle but not in cardiac tissue (Tsc1c/cSMAcre-ER(T2+/-)). The Tsc1c/cSMAcre-ER(T2+/-) mice also developed hypertension. However, their survival was normal and no cardiac abnormalities were observed. Our results suggest that loss of Tsc1 in the heart causes cardiomegaly, which is driven by increased cardiomyocyte proliferation that also appears to confer relative resistance to afterload reduction. These findings support a critical role for the Tsc1 gene as gatekeeper in the protection against uncontrolled cardiac growth.


Assuntos
Cardiomegalia/metabolismo , Proliferação de Células/genética , Miócitos Cardíacos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Modelos Animais de Doenças , Hemodinâmica/fisiologia , Hiperplasia/genética , Hiperplasia/metabolismo , Immunoblotting , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase Multiplex , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos Cardíacos/patologia , Reação em Cadeia da Polimerase , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética
14.
Horm Cancer ; 5(5): 284-98, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25069840

RESUMO

Lymphangioleiomyomatosis (LAM) is a female-predominant lung disease that can lead to respiratory failure. LAM cells typically have inactivating tuberous sclerosis 2 (TSC2) mutations, leading to mTORC1 hyperactivation. The gender specificity of LAM suggests that female hormones contribute to disease progression. Clinical findings indicate that estradiol exacerbates LAM behaviors and symptoms. Although hormonal therapy with progesterone has been employed, the benefit in LAM improvement has not been achieved. We have previously found that estradiol promotes the survival and lung metastasis of cells lacking tuberin in a preclinical model of LAM. In this study, we hypothesize that progesterone alone or in combination with estradiol promotes metastatic behaviors of TSC2-deficient cells. In cell culture models of TSC2-deficient LAM patient-derived and rat uterine leiomyoma-derived cells, we found that progesterone treatment or progesterone plus estradiol resulted in increased phosphorylation of Protein Kinase B (Akt) and Extracellular signal-regulated kinases1/2 (ERK1/2), induced the proliferation, and enhanced the migration and invasiveness. In addition, treatment of progesterone plus estradiol synergistically decreased the levels of reactive oxygen species and enhanced cell survival under oxidative stress. In a murine model of LAM, treatment of progesterone plus estradiol promoted the growth of xenograft tumors; however, progesterone treatment did not affect the development of xenograft tumors of Tsc2-deficient cells. Importantly, treatment of progesterone plus estradiol resulted in alteration of lung morphology and significantly increased the number of lung micrometastases of Tsc2-deficient cells compared with estradiol treatment alone. Collectively, these data indicate that progesterone increases the metastatic potential of Tsc2-deficient LAM patient-derived cells in vitro and lung metastasis in vivo. Thus, targeting progesterone-mediated signaling events may have therapeutic benefit for LAM and possibly other hormonally dependent cancers.


Assuntos
Estradiol/farmacologia , Neoplasias Pulmonares/secundário , Linfangioleiomiomatose/genética , Linfangioleiomiomatose/patologia , Progesterona/farmacologia , Proteínas Supressoras de Tumor/deficiência , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Linhagem Celular Transformada , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Sinergismo Farmacológico , Ativação Enzimática/efeitos dos fármacos , Estradiol/metabolismo , Feminino , Humanos , Linfangioleiomiomatose/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Progesterona/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/patologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Exp Med ; 211(1): 15-28, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24395886

RESUMO

Lymphangioleiomyomatosis (LAM) is a progressive neoplastic disorder that leads to lung destruction and respiratory failure primarily in women. LAM is typically caused by tuberous sclerosis complex 2 (TSC2) mutations resulting in mTORC1 activation in proliferative smooth muscle-like cells in the lung. The female predominance of LAM suggests that estradiol contributes to disease development. Metabolomic profiling identified an estradiol-enhanced prostaglandin biosynthesis signature in Tsc2-deficient (TSC(-)) cells, both in vitro and in vivo. Estradiol increased the expression of cyclooxygenase-2 (COX-2), a rate-limiting enzyme in prostaglandin biosynthesis, which was also increased at baseline in TSC-deficient cells and was not affected by rapamycin treatment. However, both Torin 1 treatment and Rictor knockdown led to reduced COX-2 expression and phospho-Akt-S473. Prostaglandin production was also increased in TSC-deficient cells. In preclinical models, both Celecoxib and aspirin reduced tumor development. LAM patients had significantly higher serum prostaglandin levels than healthy women. 15-epi-lipoxin-A4 was identified in exhaled breath condensate from LAM subjects and was increased by aspirin treatment, indicative of functional COX-2 expression in the LAM airway. In vitro, 15-epi-lipoxin-A4 reduced the proliferation of LAM patient-derived cells in a dose-dependent manner. Targeting COX-2 and prostaglandin pathways may have therapeutic value in LAM and TSC-related diseases, and possibly in other conditions associated with mTOR hyperactivation.


Assuntos
Carcinogênese/metabolismo , Estradiol/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Linfangioleiomiomatose/metabolismo , Complexos Multiproteicos/metabolismo , Prostaglandinas/biossíntese , Serina-Treonina Quinases TOR/metabolismo , Análise de Variância , Animais , Aspirina/farmacologia , Testes Respiratórios , Proteínas de Transporte/genética , Proliferação de Células/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Immunoblotting , Imuno-Histoquímica , Lipoxinas/análise , Alvo Mecanístico do Complexo 2 de Rapamicina , Metabolômica , Camundongos , Camundongos SCID , Microscopia Confocal , Naftiridinas/farmacologia , Prostaglandinas/sangue , Proteína Companheira de mTOR Insensível à Rapamicina , Reação em Cadeia da Polimerase em Tempo Real , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/deficiência
16.
J Clin Invest ; 120(1): 93-102, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20038815

RESUMO

Mutations in either of the genes encoding the tuberous sclerosis complex (TSC), TSC1 and TSC2, result in a multisystem tumor disorder characterized by lesions with unusual lineage expression patterns. How these unusual cell-fate determination patterns are generated is unclear. We therefore investigated the role of the TSC in the Drosophila external sensory organ (ESO), a classic model of asymmetric cell division. In normal development, the sensory organ precursor cell divides asymmetrically through differential regulation of Notch signaling to produce a pIIa and a pIIb cell. We report here that inactivation of Tsc1 and overexpression of the Ras homolog Rheb each resulted in duplication of the bristle and socket cells, progeny of the pIIa cell, and loss of the neuronal cell, a product of pIIb cell division. Live imaging of ESO development revealed this cell-fate switch occurred at the pIIa-pIIb 2-cell stage. In human angiomyolipomas, benign renal neoplasms often found in tuberous sclerosis patients, we found evidence of Notch receptor cleavage and Notch target gene activation. Further, an angiomyolipoma-derived cell line carrying biallelic TSC2 mutations exhibited TSC2- and Rheb-dependent Notch activation. Finally, inhibition of Notch signaling using a gamma-secretase inhibitor suppressed proliferation of Tsc2-null rat cells in a xenograft model. Together, these data indicate that the TSC and Rheb regulate Notch-dependent cell-fate decision in Drosophila and Notch activity in mammalian cells and that Notch dysregulation may underlie some of the distinctive clinical and pathologic features of TSC.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas de Drosophila/fisiologia , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Neuropeptídeos/fisiologia , Receptores Notch/fisiologia , Órgãos dos Sentidos/embriologia , Transdução de Sinais/fisiologia , Angiomiolipoma/metabolismo , Animais , Evolução Biológica , Drosophila , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Rim/metabolismo , Masculino , Proteínas de Membrana/fisiologia , Camundongos , Camundongos SCID , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Ratos , Esclerose Tuberosa/etiologia
17.
J Invest Dermatol ; 128(4): 980-7, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17914450

RESUMO

The objective of this study was to determine whether activation of the kinase mammalian target of rapamycin (mTOR) is associated with human melanoma. We found moderate or strong hyperphosphorylation of ribosomal protein S6 in 78/107 melanomas (73%). In contrast, only 3/67 benign nevi (4%) were moderately positive, and none were strongly positive. These data indicate that mTOR activation is very strongly associated with malignant, compared to benign, melanocytic lesions. Next, we tested six melanoma-derived cell lines for evidence of mTOR dysregulation. Five of the six lines showed persistent phosphorylation of S6 after 18 hours of serum deprivation, and four had S6 phosphorylation after 30 minutes of amino-acid withdrawal, indicating inappropriate mTOR activation. The proliferation of three melanoma-derived lines was blocked by the mTOR inhibitor rapamycin, indicating that mTOR activation is a growth-promoting factor in melanoma-derived cells. mTOR is directly activated by the small guanosine triphosphatase Ras homolog enriched in brain (Rheb), in a farnesylation-dependent manner. Therefore, to investigate the mechanism of mTOR activation, we used the farnesyl transferase inhibitor FTI-277, which partially blocked the growth of three of the six melanoma cell lines. Together, these data implicate activation of mTOR in the pathogenesis of melanoma, and suggest that Rheb and mTOR may be targets for melanoma therapy.


Assuntos
Melanoma/enzimologia , Melanoma/patologia , Proteínas Quinases/metabolismo , Neoplasias Cutâneas/enzimologia , Neoplasias Cutâneas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Análise Mutacional de DNA , Humanos , Melanoma/genética , Nevo/enzimologia , Nevo/patologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína S6 Ribossômica/metabolismo , Sirolimo/farmacologia , Neoplasias Cutâneas/genética , Serina-Treonina Quinases TOR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA