Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Clin Chem Lab Med ; 61(12): 2084-2093, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37540644

RESUMO

The total testing process harmonization is central to laboratory medicine, leading to the laboratory test's effectiveness. In this opinion paper the five phases of the TTP are analyzed, describing, and summarizing the critical issues that emerged in each phase of the TTP with the SARS-CoV-2 serological tests that have affected their effectiveness. Testing and screening the population was essential for defining seropositivity and, thus, driving public health policies in the management of the COVID-19 pandemic. However, the many differences in terminology, the unit of measurement, reference ranges and parameters for interpreting results make analytical results difficult to compare, leading to the general confusion that affects or completely precludes the comparability of data. Starting from these considerations related to SARS-CoV-2 serological tests, through interdisciplinary work, the authors have highlighted the most critical points and formulated proposals to make total testing process harmonization effective, positively impacting the diagnostic effectiveness of laboratory tests.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Pandemias , Teste para COVID-19 , Testes Sorológicos/métodos , Anticorpos Antivirais
2.
Bioengineering (Basel) ; 11(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38671754

RESUMO

Skeletal muscle tissue (SMT) has a highly hierarchical and anisotropic morphology, featuring aligned and parallel structures at multiple levels. Various factors, including trauma and disease conditions, can compromise the functionality of skeletal muscle. The in vitro modeling of SMT represents a useful tool for testing novel drugs and therapies. The successful replication of SMT native morphology demands scaffolds with an aligned anisotropic 3D architecture. In this work, a 3D PCL fibrous scaffold with aligned morphology was developed through the synergistic combination of Melt-Extrusion Additive Manufacturing (MEAM) and porogen leaching, utilizing PCL as the bulk material and PEG as the porogen. PCL/PEG blends with different polymer ratios (60/40, 50/50, 40/60) were produced and characterized through a DSC analysis. The MEAM process parameters and porogen leaching in bi-distilled water allowed for the development of a micrometric anisotropic fibrous structure with fiber diameters ranging from 10 to 100 µm, depending on PCL/PEG blend ratios. The fibrous scaffolds were coated with Gelatin type A to achieve a biomimetic coating for an in vitro cell culture and mechanically characterized via AFM. The 40/60 PCL/PEG scaffolds yielded the most homogeneous and smallest fibers and the greatest physiological stiffness. In vitro cell culture studies were performed by seeding C2C12 cells onto a selected scaffold, enabling their attachment, alignment, and myotube formation along the PCL fibers during a 14-day culture period. The resultant anisotropic scaffold morphology promoted SMT-like cell conformation, establishing a versatile platform for developing in vitro models of tissues with anisotropic morphology.

3.
ACS Biomater Sci Eng ; 9(7): 4368-4380, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37289177

RESUMO

Adverse remodeling post-myocardial infarction is hallmarked by the phenotypic change of cardiac fibroblasts (CFs) into myofibroblasts (MyoFs) and over-deposition of the fibrotic extracellular matrix (ECM) mainly composed by fibronectin and collagens, with the loss of tissue anisotropy and tissue stiffening. Reversing cardiac fibrosis represents a key challenge in cardiac regenerative medicine. Reliable in vitro models of human cardiac fibrotic tissue could be useful for preclinical testing of new advanced therapies, addressing the limited predictivity of traditional 2D cell cultures and animal in vivo models. In this work, we engineered a biomimetic in vitro model, reproducing the morphological, mechanical, and chemical cues of native cardiac fibrotic tissue. Polycaprolactone (PCL)-based scaffolds with randomly oriented fibers were fabricated by solution electrospinning technique, showing homogeneous nanofibers with an average size of 131 ± 39 nm. PCL scaffolds were then surface-functionalized with human type I collagen (C1) and fibronectin (F) by dihydroxyphenylalanine (DOPA)-mediated mussel-inspired approach (PCL/polyDOPA/C1F), in order to mimic fibrotic cardiac tissue-like ECM composition and support human CF culture. BCA assay confirmed the successful deposition of the biomimetic coating and its stability during 5 days of incubation in phosphate-buffered saline. Immunostaining for C1 and F demonstrated their homogeneous distribution in the coating. AFM mechanical characterization showed that PCL/polyDOPA/C1F scaffolds, in wet conditions, resembled fibrotic tissue stiffness with an average Young's modulus of about 50 kPa. PCL/polyDOPA/C1F membranes supported human CF (HCF) adhesion and proliferation. Immunostaining for α-SMA and quantification of α-SMA-positive cells showed HCF activation into MyoFs in the absence of a transforming growth factor ß (TGF-ß) profibrotic stimulus, suggesting the intrinsic ability of biomimetic PCL/polyDOPA/C1F scaffolds to sustain the development of cardiac fibrotic tissue. A proof-of-concept study making use of a commercially available antifibrotic drug confirmed the potentialities of the developed in vitro model for drug efficacy testing. In conclusion, the proposed model was able to replicate the main hallmarks of early-stage cardiac fibrosis, appearing as a promising tool for future preclinical testing of advanced regenerative therapies.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Animais , Humanos , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Fibronectinas/farmacologia , Biomimética , Fibrose
4.
Artigo em Inglês | MEDLINE | ID: mdl-36791024

RESUMO

Cell contact guidance is widely employed to manipulate cell alignment and differentiation in vitro. The use of nano- or micro-patterned substrates allows efficient control of cell organization, thus opening up to biological models that cannot be reproduced spontaneously on standard culture dishes. In this paper, we explore the concept of cell contact guidance by Liquid Crystalline Networks (LCNs) presenting different surface topographies obtained by self-assembly of the monomeric mixture. The materials are prepared by photopolymerization of a low amount of diacrylate monomer dissolved in a liquid crystalline solvent, not participating in the reaction. The alignment of the liquid crystals, obtained before polymerization, determines the scaffold morphology, characterized by a nanometric structure. Such materials are able to drive the organization of different cell lines, e.g., fibroblasts and myoblasts, allowing for the alignment of single cells or high-density cell cultures. These results demonstrate the capabilities of rough surfaces prepared from the spontaneous assembly of liquid crystals to control biological models without the need of lithographic patterning or complex fabrication procedures. Interestingly, during myoblast differentiation, also myotube structuring in linear arrays is observed along the LCN fiber orientation. The implementation of this technology will open up to the formation of muscular tissue with well-aligned fibers in vitro mimicking the structure of native tissues.

5.
Dalton Trans ; 51(13): 5296-5308, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35293407

RESUMO

Mixed mercury(II) halogenides have been known for a long time as good NLO (non-linear optic) materials. The NLO properties are due to the halogen disposition in the solid state and the electron distribution among the bonds formed by soft elements. We investigated the possibility of using HgBrI as a asymmetric tecton in the preparation of noncentrosymmetric crystalline compounds, by exploiting the coordinating power of Hg(II) toward N-donor ligands, and seven coordination complexes have been obtained. To unravel the nature of these complex systems we combined the data from different techniques: Raman spectroscopy, SC-XRD and Second Harmonic Generation, supported by a periodic DFT computational approach. In HgBrI crystalline products with low symmetry, the presence of substitutional disorder leads to a lack of the inversion center conferring NLO activity, which is absent in analogous complexes of Hg(II) halogenides. These results indicate HgBrI as an interesting tecton to obtain metallorganic NLO materials.

6.
Front Bioeng Biotechnol ; 10: 983872, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507252

RESUMO

In vitro models of pathological cardiac tissue have attracted interest as predictive platforms for preclinical validation of therapies. However, models reproducing specific pathological features, such as cardiac fibrosis size (i.e., thickness and width) and stage of development are missing. This research was aimed at engineering 2D and 3D models of early-stage post-infarct fibrotic tissue (i.e., characterized by non-aligned tissue organization) on bioartificial scaffolds with biomimetic composition, design, and surface stiffness. 2D scaffolds with random nanofibrous structure and 3D scaffolds with 150 µm square-meshed architecture were fabricated from polycaprolactone, surface-grafted with gelatin by mussel-inspired approach and coated with cardiac extracellular matrix (ECM) by 3 weeks culture of human cardiac fibroblasts. Scaffold physicochemical properties were thoroughly investigated. AFM analysis of scaffolds in wet state, before cell culture, confirmed their close surface stiffness to human cardiac fibrotic tissue. Following 3 weeks culture, biomimetic biophysical and biochemical scaffold properties triggered the activation of myofibroblast phenotype. Upon decellularization, immunostaining, SEM and two-photon excitation fluorescence microscopy showed homogeneous decoration of both 2D and 3D scaffolds with cardiac ECM. The versatility of the approach was demonstrated by culturing ventricular or atrial cardiac fibroblasts on scaffolds, thus suggesting the possibility to use the same scaffold platforms to model both ventricular and atrial cardiac fibrosis. In the future, herein developed in vitro models of cardiac fibrotic tissue, reproducing specific pathological features, will be exploited for a fine preclinical tuning of therapies.

7.
J Fluoresc ; 21(3): 929-36, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20213243

RESUMO

Fluorescence techniques are widely used as detection methods in a wide range of biological imaging and analytical applications. The purpose of this work is to determine a measurement method which leads to a comparison between different classes of fluorophores in term of stability of the fluorescence signal upon thermal treatment cycles. This kind of investigation can determine whether the fluorophore performance is affected by heating/cooling cycles and to what extent. The fluorophores considered in this work were organic fluorophores belonging to the family of indocyanine dyes (IRIS3 by Cyanine Technologies S.p.A.) in their molecular form or encapsulated within silica nanoparticles, and CdSe/ZnS carboxyl quantum dots (Qdots 565 ITK by Invitrogen). The NIST Standard Reference Material® SRM 1932 fluorescein solution was used in the certified concentration as reference material in order to evaluate the repeatability of the used spectrofluorimeter. The proposed measurement protocol allows to characterize all kind of fluorophores upon thermal treatments. This allows direct comparison of their performance under temperature changes, giving useful guidelines for the selection of the most suitable fluorophore for the envisaged application. Moreover the method appears to be a promising tool for the characterisation of reference fluorescent materials. The experimental results demonstrate that each fluorophore class shows a specific behaviour. The experimental data analysis points out an important hysteresis effect for quantum dots that was not detected for cyanine molecules and was only slightly detected for cyanine doped silica nanoparticles.


Assuntos
Carbocianinas , Corantes Fluorescentes/química , Temperatura Alta , Nanopartículas/química , Pontos Quânticos , Dióxido de Silício , Métodos , Soluções , Espectrometria de Fluorescência , Temperatura
8.
Cells ; 10(5)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066077

RESUMO

The study of the miRNA cargo embedded in extracellular vesicles (EVs) released from adipose-derived mesenchymal stromal cells (ASC) preconditioned with IL-1ß, an inflammatory stimulus driving osteoarthritis (OA), along with EVs-cartilage dynamic interaction represent poorly explored fields and are the purpose of the present research. ASCs were isolated from subcutaneous adipose tissue and EVs collected by ultracentrifugation. Shuttled miRNAs were scored by high-throughput screening and analyzed through bioinformatics approach that predicted the potentially modulated OA-related pathways. Fluorescently labeled EVs incorporation into OA cartilage explants was followed in vitro by time-lapse coherent anti-Stokes Raman scattering; second harmonic generation and two-photon excited fluorescence. After IL-1ß preconditioning, 7 miRNA were up-regulated, 4 down-regulated, 37 activated and 17 silenced. Bioinformatics allowed to identify miRNAs and target genes mainly involved in Wnt, Notch, TGFß and Indian hedgehog (IHH) pathways, cartilage homeostasis, immune/inflammatory responses, cell senescence and autophagy. As well, ASC-EVs steadily diffuse in cartilage cells and matrix, reaching a plateau 16 h after administration. Overall, ASCs preconditioned with IL-1ß allows secretion of EVs embedded with a chondro-protective miRNA cargo, able to fast penetrate in collagen-rich areas of cartilage with tissue saturation in a day. Further functional studies exploring the EVs dose-effects are needed to achieve clinical relevance.


Assuntos
Tecido Adiposo/metabolismo , Cartilagem Articular/metabolismo , Vesículas Extracelulares/metabolismo , Interleucina-1beta/metabolismo , Células-Tronco Mesenquimais/citologia , Adulto , Condrócitos/metabolismo , Colágeno/química , Biologia Computacional , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Inflamação , Cinética , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Osteoartrite/metabolismo , Espectrometria de Fluorescência , Análise Espectral Raman
9.
Pharmaceutics ; 12(8)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764234

RESUMO

Mesenchymal stromal cells (MSCs)-derived extracellular vesicles (EVs) are promising therapeutic nano-carriers for the treatment of osteoarthritis (OA). The assessment of their uptake in tissues is mandatory but, to date, available technology does not allow to track and quantify incorporation in real-time. To fill this knowledge gap, the present study was intended to develop an innovative technology to determine kinetics of fluorescent MSC-EV uptake by means of time-lapse quantitative microscopy techniques. Adipose-derived mesenchymal stromal cells (ASCs)-EVs were fluorescently labeled and tracked during their uptake into chondrocytes micromasses or cartilage explants, both derived from OA patients. Immunofluorescence and time-lapse coherent anti-Stokes Raman scattering, second harmonic generation and two-photon excited fluorescence were used to follow and quantify incorporation. EVs penetration appeared quickly after few minutes and reached 30-40 µm depth after 5 h in both explants and micromasses. In explants, uptake was slightly faster, with EVs signal overlapping both extracellular matrix and chondrocytes, whereas in micromasses a more homogenous diffusion was observed. The finding of this study demonstrates that this innovative technology is a powerful tool to monitor EVs migration in tissues characterized by a complex extracellular network, and to obtain data resembling in vivo conditions.

10.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 73(Pt 4): 737-743, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28762983

RESUMO

In this work four metal-organic framework isomorphs, based on fructose and alkali-earth halogenides, were investigated to better understand the effect of the size of the cation and the different polarizability of the anion on the calculated hyperpolarizability and optical susceptibility, which are correlated to non-linear optical properties. The compounds were characterized by X-ray diffraction and the first hyperpolarizability and the second-order susceptibility were obtained from theoretical calculations. Furthermore, a new method to measure the second-harmonic (SH) efficiency on a small quantity of powder at different wavelengths of excitation was optimized and an attempt was made to assess the reduction of the SH intensity for small quantities of nano-crystals, in order to ascertain the possibility of applications in biological systems. The results of this work show that both the intrinsic nature of the anion and the induced dissociation of cations and anions by fructose play a role in the second-harmonic generating properties of such compounds.


Assuntos
Estruturas Metalorgânicas/química , Ânions/química , Cristalização , Frutose/química , Estruturas Metalorgânicas/síntese química , Modelos Químicos , Análise Espectral Raman , Difração de Raios X
11.
Stem Cells Int ; 2016: 7176154, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27822229

RESUMO

The biomaterial scaffold plays a key role in most tissue engineering strategies. Its surface properties, micropatterning, degradation, and mechanical features affect not only the generation of the tissue construct in vitro, but also its in vivo functionality. The area of myocardial tissue engineering still faces significant difficulties and challenges in the design of bioactive scaffolds, which allow composition variation to accommodate divergence in the evolving myocardial structure. Here we aimed at verifying if a microstructured bioartificial scaffold alone can provoke an effect on stem cell behavior. To this purpose, we fabricated microstructured bioartificial polymeric constructs made of PLGA/gelatin mimicking anisotropic structure and mechanical properties of the myocardium. We found that PLGA/gelatin scaffolds promoted adhesion, elongation, ordered disposition, and early myocardial commitment of human mesenchymal stem cells suggesting that these constructs are able to crosstalk with stem cells in a precise and controlled manner. At the same time, the biomaterial degradation kinetics renders the PLGA/gelatin constructs very attractive for myocardial regeneration approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA