RESUMO
There has been a significant rise in cancer-related mortality in the Ladakh region during the past 10 years. The most common type of case is gastrointestinal cancer, which has been linked in theory by medical research to lifestyle factors, high altitude conditions, and the prevalence of Helicobacter pylori bacteria brought on by poor hygiene. Nevertheless, the precise cause of the rise in cancer cases is still unknown. Concurrently, there has been a significant change in Ladakh's water use practices due to development, improved basic utilities, and related vocational shifts. The local population has become increasingly reliant on groundwater since it provides a year-round, continuous water supply for home and agricultural uses. In this study, we assessed heavy metal contamination in groundwaters and associated human health risks. The results indicate that 46-96% of the groundwater samples have heavy metal pollution with a health hazard index > 1, which means using these groundwaters for drinking, food preparation, and agriculture is likely to result in carcinogenic and non-carcinogenic health hazards. The main heavy metal contaminants found in the groundwater of the Leh district include Cr, As, Hg, and U. According to the health risk assessment, 46-76% of the groundwater samples contain unsafe levels of Cr and As. Prolonged exposure to these levels is likely to cause gastrointestinal cancer in the local population. Acute to chronic exposure to U and Hg concentrations present in some groundwater samples is likely to result in various non-carcinogenic health risks.
Assuntos
Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Metais Pesados/análise , Água Subterrânea/química , Humanos , Poluentes Químicos da Água/análise , Medição de Risco , Paquistão , Monitoramento AmbientalRESUMO
We have studied a wide-bandgap oxide semiconductor, CaGa1.99Cr0.01O4, which possesses high crystal field strength and develops deep traps. These traps efficiently store electric charges after excitation with ultraviolet light. Stimulation of trap charges using infrared radiation (both coherent and incoherent) gives wideband emission of Cr3+ in the red-infrared region, which is similar to the photon upconversion process in lanthanides. Under laser excitation, high photon density and local heating pronounce the coupling of E2 and T24 states and causes an excited state crossover of the population from the E2 to T24 state. This expands the emission band-width of Cr3+ up to 900 nm.
RESUMO
Past climate reconstructions from palaeoecological records require an understanding of relationships between modern vegetation and climate. Phytoliths are being used widely to reconstruct variations in C3/C4 grasses in the past vegetation and corresponding climate. However, little understanding is available on their relationships with the climate driver(s). Even though, the driver(s) regulating C3/C4 grass distributions vary regionally, while reconstructing the past distributions, a grass phytolith-based climatic index (Ic) has often been found to be used globally without assessing its regional consistency. In the Himalaya, the working potential of Ic has proven to be unsatisfactory when compared to other regions of the globe. To improve the efficacy of Ic, we have identified the redundant grass phytolith morphs and revised it by including four exclusive C3-grass indicator morphotypes (bilobate trapezoidal, bilobate scooped, saddle tall and saddle plateaued) to the existing Ic calculation. Thus, a new climatic index, revised Ic (rIc) is proposed in this article. We have compared the rIc with modern climate variables and a relationship with mean annual temperature (MAT) is established with statistical validation. To assess the working potential of the proposed calibration function in the past temperature reconstructions, we have estimated the late Holocene MAT variations in the Himalaya using rIc. We infer that in the mountainous regions like the Himalaya, even with irregular precipitation distribution, variability in C3/C4 grass distributions and their phytolith spectra seem to be a primary function of temperature. Further, we recommend that rIc can be satisfactorily used to reconstruct past temperature variations in the Himalaya and similar mountainous regions where soil water availability is not a limiting factor.
RESUMO
The prolonged use of old fashioned gadgets, especially mobile phones, is declining readily with the advancement in technology which ultimately lead to generation of e-waste. The present study investigates the concentrations of nine metals (Ba, Cd, Cr, Cu, Fe, Ni, Pb, Sn, and Zn) in various components of the mobile phones using Toxicity Characteristic Leaching Procedure (TCLP), Waste Extraction Test (WET) and Synthetic Precipitation Leaching Procedure (SPLP). The results were compared with the threshold limits for hazardous waste defined by the California Department of Toxic Substances Control (CDTSC) and United States Environmental Protection Agency (USEPA). The average concentrations of metals were found high in PWBs. WET was found relatively aggressive as compared to TCLP and SPLP. Redundancy analysis (RDA) suggests that part of mobile, extraction test, manufacturer, mobile model and year of manufacturing explain 34.66% of the variance. According to the present study, waste mobile phones must be considered as hazardous due to the potential adverse impact of toxic metals on human health and environment. However, mobile phones can be an asset as systematic extraction and recycling could reduce the demand of primary metals mining and conserve the natural resources.
RESUMO
In order to quantify the Indian summer monsoon (ISM) variability for a monsoon dominated agrarian based Indian socio-economy, we used combined high resolution δ13C, total organic carbon (TOC), sediment texture and environmental magnetic data of the samples from a ~3 m deep glacial outwash sedimentary profile from the Sikkim Himalaya. Our decadal to centennial scale records identified five positive and three negative excursions of the ISM since last ~13 ka. The most prominent abrupt negative ISM shift was observed during the termination of the Younger Dryas (YD) between ~11.7 and 11.4 ka. While, ISM was stable between ~11 and 6 ka, and declined prominently between 6 and 3 ka. Surprisingly, during both the Medieval Warm Period (MWP) and Little Ice age (LIA) spans, ISM was strong in this part of the Himalaya. These regional changes in ISM were coupled to southward shifting in mean position of the Intertropical Convergence Zone (ITCZ) and variations in East Asian monsoon (EAM). Our rainfall reconstructions are broadly in agreement with local, regional reconstructions and PMIP3, CSIRO-MK3L model simulations.
RESUMO
The antiquity and decline of the Bronze Age Harappan civilization in the Indus-Ghaggar-Hakra river valleys is an enigma in archaeology. Weakening of the monsoon after ~5 ka BP (and droughts throughout the Asia) is a strong contender for the Harappan collapse, although controversy exists about the synchroneity of climate change and collapse of civilization. One reason for this controversy is lack of a continuous record of cultural levels and palaeomonsoon change in close proximity. We report a high resolution oxygen isotope (δ(18)O) record of animal teeth-bone phosphates from an archaeological trench itself at Bhirrana, NW India, preserving all cultural levels of this civilization. Bhirrana was part of a high concentration of settlements along the dried up mythical Vedic river valley 'Saraswati', an extension of Ghaggar river in the Thar desert. Isotope and archaeological data suggest that the pre-Harappans started inhabiting this area along the mighty Ghaggar-Hakra rivers fed by intensified monsoon from 9 to 7 ka BP. The monsoon monotonically declined after 7 ka yet the settlements continued to survive from early to mature Harappan time. Our study suggests that other cause like change in subsistence strategy by shifting crop patterns rather than climate change was responsible for Harappan collapse.